Additive manufacturing, with its fast development and application of polymeric materials, led to the wide utilization of polylactic acid (PLA) materials. As a biodegradable and biocompatible aliphatic polyester, produced from renewable sources, PLA is widely used in different sectors, from industry to medicine and science. The aim of this research is to determine the differences between two forms of the PLA material, i.
View Article and Find Full Text PDFThe three-point bending test is a valuable method for evaluating the mechanical properties of 3D-printed biomaterials, which can be used in various applications. The use of 3D printing in specimen preparation enables precise control over material composition and microstructure, facilitating the investigation of different printing parameters and advanced materials. The traditional approach to analyzing the mechanical properties of a material using a three-point bending test has the disadvantage that it provides only global information about the material's behavior.
View Article and Find Full Text PDFAdditive manufacturing technologies have developed rapidly in recent decades, pushing the limits of known manufacturing processes. The need to study the properties of the different materials used for these processes comprehensively and in detail has become a primary goal in order to get the best out of the manufacturing itself. The widely used thermoplastic polymer material acrylonitrile butadiene styrene (ABS) was selected in the form of both filaments and ABS-like resins to investigate and compare the mechanical properties through a series of different tests.
View Article and Find Full Text PDFClear dental aligners are used for treating orthodontic anomalies (misaligned teeth, inappropriate contact between upper and lower teeth etc.), minor irregularities and bruxism. Using additive manufacturing technologies clear dental aligners are made of biocompatible photopolymer, using a vat photopolymerization technology.
View Article and Find Full Text PDF