The aim of this research was the synthesis of silver nanoparticles (SPA- and SPR-AgNPs) using the aqueous extracts of the aerial (SPA) and the root (SPR) parts of the plant L., their characterization, reaction condition optimization, and evaluation of their biological and catalytic activity. UV-Vis spectroscopy, X-ray powder diffraction (XRPD), scanning electron microscopy with EDS analysis (SEM/EDS), and dynamic light scattering (DLS) analysis were utilized to characterize the nanoparticles, while Fourier transform infrared (FTIR) spectroscopy was used to detect some functional groups of compounds present in the plant extracts and nanoparticles.
View Article and Find Full Text PDFThe study's objective was to obtain silver nanoparticles (SVAgNP and FUAgNP) using aqueous extracts of and . The optimal conditions for nanoparticle synthesis were determined and obtained; nanoparticles were then characterized using UV-Vis, Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS). SVAgNP and FUAgNP possessed a crystalline structure with 48.
View Article and Find Full Text PDFThe knowledge of the structural and chemical properties of biochars is decisive for their application as technical products. For this reason, methods for the characterization of biochars that are generally applicable and allow quality control are highly desired. Several methods that have shown potential in other studies were used to investigate two activated carbons and seven biochars from different processes and feedstock.
View Article and Find Full Text PDFThis study was designed to evaluate the optimal conditions for the eco-friendly synthesis of silver nanoparticles (AgNPs) using L. (Lythraceae) aqueous extracts and their potential application and safe use. AgNPs synthesized using aerial parts (LSA-AgNPs) and root extract (LSR-AgNPs) were characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM/EDS), and X-ray powder diffraction (XRPD).
View Article and Find Full Text PDFChlorpyrifos (CPS) is a toxic pesticide present in several pesticide formulations, with low degradability by natural processes. The degradation leads to the toxic metabolite chlorpyrifos-oxon (CPO). The analytical techniques used for the CPS and CPO analysis, like UPLC-PDA and GC-MS, are accurate but also expensive and time consuming, and they need sample pretreatment.
View Article and Find Full Text PDF