Publications by authors named "Zoran Mijic"

When exposed to convective thunderstorm conditions, pollen grains can rupture and release large numbers of allergenic sub-pollen particles (SPPs). These sub-pollen particles easily enter deep into human lungs, causing an asthmatic response named thunderstorm asthma (TA). Up to now, efforts to numerically predict the airborne SPP process and to forecast the occurrence of TAs are unsatisfactory.

View Article and Find Full Text PDF

The aim of this study was to assess PM10 pollution level and estimate required source emission reduction in Belgrade area, the second largest urban center in the Balkans. Daily mass concentrations and trace metal content (As, Cd, Cr, Mn, Ni, Pb) of PM10 were evaluated for three air quality monitoring sites of different types: urban-traffic (Slavija), suburban (Lazarevac) and rural (Grabovac) under the industrial influence, during the period of 2012-13. Noncompliance with current Air Quality Standards (AQS) was noticeable: annual means were higher than AQS at Slavija and Lazarevac, and daily frequency threshold was exceeded at all three locations.

View Article and Find Full Text PDF

In this study, advanced multivariate methods were applied for VOC source apportionment and subsequent short-term forecast of industrial- and vehicle exhaust-related contributions in Belgrade urban area (Serbia). The VOC concentrations were measured using PTR-MS, together with inorganic gaseous pollutants (NOx, NO, NO2, SO2, and CO), PM10, and meteorological parameters. US EPA Positive Matrix Factorization and Unmix receptor models were applied to the obtained dataset both resolving six source profiles.

View Article and Find Full Text PDF

O(3), NO(2), SO(2), CO and PM(10) concentrations, simultaneously determined for the first time in Belgrade urban area in the autumnal period of 2005, are presented. The obtained results display similar behaviour of SO(2), NO(2), CO, PM(10) opposite from that of O(3). The weekend effect was also investigated showing diminution of average daily concentrations of SO(2), NO(2), PM(10) and CO for 72, 40, 37 and 42% respectively, and increase of the average daily concentration of O(3) for 56%.

View Article and Find Full Text PDF