Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells.
View Article and Find Full Text PDFObjectives: The study aims to evaluate the effects of non-thermal atmospheric plasma (NTAP) treatments on dentin wetting and surface free energy (SFE) and compare the effects of NTAP treatment, etch-and-rinse, and self-etch protocols for application of universal adhesives.
Materials And Methods: Mid-coronal dentin of intact third molars was used to measure contact angles of distilled water, ethylene-glycol, and diiodomethane and calculate SFE following different NTAP preset treatments (feeding gas consisting of pure He, He + 1% O, He + 1.5% O), power input (1 or 3 W), and tip-to-surface distance (2, 4, or 8 mm).
In this paper we make a parallel between the swarm method in physics of ionized gases and modeling of positrons in radiation therapy and diagnostics. The basic idea is to take advantage of the experience gained in the past with electron swarms and to use it in establishing procedures of modeling positron diagnostics and therapy based on the well-established experimental binary collision data. In doing so we discuss the application of Monte Carlo technique for positrons in the same manner as used previously for electron swarms, we discuss the role of complete cross section sets (complete in terms of number, momentum and energy balance and tested against measured swarm parameters), we discuss the role of benchmarks and how to choose benchmarks for electrons that may perhaps be a subject to experimental verification.
View Article and Find Full Text PDF