Publications by authors named "Zoran D Ristovski"

The increasing share of using biofuels in vehicles (mandated by current regulations) leads to a reduction in particle size, resulting in increased particle toxicity. However, existing regulations disregarded small particles (sub-23 nm) that are more toxic. This impact is more significant during vehicle cold-start operation, which is an inevitable frequent daily driving norm where after-treatment systems prove ineffective.

View Article and Find Full Text PDF

In the transportation sector, the share of biofuels such as biodiesel is increasing and it is known that such fuels significantly affect NOx emissions. In addition to NOx emission from diesel engines, which is a significant challenge to vehicle manufacturers in the most recent emissions regulation (Euro 6.2), this study investigates NO which is a toxic emission that is currently unregulated but is a focus to be regulated in the next regulation (Euro 7).

View Article and Find Full Text PDF

Background: The health effects of e-cigarettes in patients with pre-existing lung disease are unknown. The aim of this study was to investigate whether aerosols from a fourth-generation e-cigarette produces similar in-vitro cytotoxic, DNA damage and inflammatory effects on bronchial epithelial cells (BECs) from patients with COPD, as cigarette smoke.

Methods: BECs from patients with COPD who underwent surgery for lung cancer and comparator (immortalised 16HBE) cells were grown at air liquid interface (ALI).

View Article and Find Full Text PDF

To estimate the oxidative potential (OP) of particulate matter (PM), two commonly used cell-free, molecular probes were applied: dithiothreitol (DTT) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), and their performance was compared with 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit). To the best of our knowledge, this is the first study in which the performance of the DTT and DCFH has been compared with the BPEAnit probe. The average concentrations of PM, organic carbon (OC) and elemental carbon (EC) for fine (PM) and coarse (PM) particles were determined.

View Article and Find Full Text PDF

Diesel emissions contain high levels of particulate matter (PM) which can have a severe effect on the airways. Diesel PM can be effectively reduced with the substitution of diesel fuel with a biofuel such as vegetable oil. Unfortunately, very little is known about the cellular effects of these alternative diesel emissions on the airways.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how transportation and emissions affect aerosol production in Australia, focusing on a measurement campaign at Mission Beach in spring 2016.
  • A notable aerosol pollution event in early October showed increased black carbon levels and new nucleation-mode aerosols influenced by meteorological conditions.
  • The results suggest that aerosol properties at the Great Barrier Reef are primarily affected by continental transport and biomass-burning sources rather than local sea breeze interactions.*
View Article and Find Full Text PDF

Introduction: Diesel emissions have a high level of particulate matter which can cause inflammation and oxidative stress in the airways. A strategy to reduce diesel particulate matter and the associated adverse effects is the use of biodiesels and fuel additives. However, very little is known about the biological effects of these alternative emissions.

View Article and Find Full Text PDF

The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel.

View Article and Find Full Text PDF

Assessment of air quality has been traditionally conducted by ground based monitoring, and more recently by manned aircrafts and satellites. However, performing fast, comprehensive data collection near pollution sources is not always feasible due to the complexity of sites, moving sources or physical barriers. Small Unmanned Aerial Vehicles (UAVs) equipped with different sensors have been introduced for in-situ air quality monitoring, as they can offer new approaches and research opportunities in air pollution and emission monitoring, as well as for studying atmospheric trends, such as climate change, while ensuring urban and industrial air safety.

View Article and Find Full Text PDF

Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints.

View Article and Find Full Text PDF
Article Synopsis
  • Diesel particulate matter (DPM) emissions are a significant source of air pollution and are linked to increased respiratory health issues, but it's challenging to pinpoint which specific components cause harm.
  • This review analyzes the physical and chemical properties of DPM, highlighting how its surface area and organic compounds contribute to respiratory illnesses.
  • The paper discusses various injury mechanisms, including inflammation and oxidative stress, advocating for better understanding to protect vulnerable populations from air pollution's adverse effects.
View Article and Find Full Text PDF

Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles.

View Article and Find Full Text PDF

The quantification of particle emission factors under controlled laboratory conditions for burning of the following five common tree species found in South East Queensland forests has been studied: Spotted Gum (Corymbia citriodora), Blue Gum (Eucalyptus tereticornis), Bloodwood (Eucalyptus intermedia), Iron Bark (Eucalyptus crebra), and Stringybark (Eucalyptus umbra). The results of the study show that the particle number emission factors and PM2.5 mass emission factors depend on the type of tree and the burning rate.

View Article and Find Full Text PDF