Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear.
View Article and Find Full Text PDFTauopathy, including Alzheimer Disease (AD), is characterized by Tau protein accumulation and autophagy dysregulation. Emerging evidence connects polyamine metabolism with the autophagy pathway, however the role of polyamines in Tauopathy remains unclear. In the present study we investigated the role of spermine synthase (SMS) in autophagy regulation and tau protein processing in and human cellular models of Tauopathy.
View Article and Find Full Text PDFPolyamine dysregulation plays key roles in a broad range of human diseases from cancer to neurodegeneration. Snyder-Robinson syndrome (SRS) is the first known genetic disorder of the polyamine pathway, caused by X-linked recessive loss-of-function mutations in spermine synthase. In the Drosophila SRS model, altered spermidine/spermine balance has been associated with increased generation of ROS and aldehydes, consistent with elevated spermidine catabolism.
View Article and Find Full Text PDFGliomas are highly malignant brain tumors with poor prognosis and short survival. NAD has been shown to impact multiple processes that are dysregulated in cancer; however, anti-cancer therapies targeting NAD synthesis have had limited success due to insufficient mechanistic understanding. Here, we adapted a glial neoplasia model and discovered the genetic requirement for NAD synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) in glioma progression in vivo and in human glioma cells.
View Article and Find Full Text PDFHarmful algal blooms (HABs) are a rising health and environmental concern in the United States, particularly in South Florida. Skin contact and the ingestion of contaminated water or fish and other seafood have been proven to have severe toxicity to humans in some cases. However, the impact of aerosolized HAB toxins is poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
Accumulative aggregation of mutant Huntingtin (Htt) is a primary neuropathological hallmark of Huntington's disease (HD). Currently, mechanistic understanding of the cytotoxicity of mutant Htt aggregates remains limited, and neuroprotective strategies combating mutant Htt-induced neurodegeneration are lacking. Here, we show that in models of HD, neuronal compartment-specific accumulation of mutant Htt aggregates causes neurodegenerative phenotypes.
View Article and Find Full Text PDFThe originally published version of this Article contained errors in Figure 1. In panel c, the grey shading denoting evolutionary conservation and the arrowheads indicating amino acids affected in Snyder-Robinson syndrome were displaced relative to the sequence. These errors have now been corrected in both the PDF and HTML versions of the manuscript.
View Article and Find Full Text PDFPolyamines are tightly regulated polycations that are essential for life. Loss-of-function mutations in spermine synthase (SMS), a polyamine biosynthesis enzyme, cause Snyder-Robinson syndrome (SRS), an X-linked intellectual disability syndrome; however, little is known about the neuropathogenesis of the disease. Here we show that loss of dSms in Drosophila recapitulates the pathological polyamine imbalance of SRS and causes survival defects and synaptic degeneration.
View Article and Find Full Text PDFTraditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients.
View Article and Find Full Text PDFThe R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for β-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear.
View Article and Find Full Text PDFIn skeletal muscle, the myosin molecule contains two sets of noncovalently attached low molecular weight proteins, the regulatory (RLC) and essential (ELC) light chains. To assess the functional and developmental significance of the fast skeletal isoform of the RLC (RLC-f), the murine fast skeletal RLC gene (Mylpf) was disrupted by homologous recombination. Heterozygotes containing an intronic neo cassette (RLC-/+) had approximately one-half of the amount of the RLC-f mRNA compared to wild-type (WT) mice but their muscles were histologically normal in both adults and neonates.
View Article and Find Full Text PDFClinical studies have revealed that mutations in the ventricular myosin regulatory light chain (RLC) lead to the development of familial hypertrophic cardiomyopathy (FHC), an autosomal dominant disease characterized by left ventricular hypertrophy, myofibrillar disarray and sudden cardiac death. While mutations in other contractile proteins have been studied widely by others, there is no report elucidating the mechanism(s) associated with FHC-linked RLC mutations. In this study, we have assessed the functional consequences of two RLC mutations, R58Q and N47K, in transgenic mice.
View Article and Find Full Text PDFFamilial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease caused by mutations in all of the major sarcomeric proteins, including the ventricular myosin regulatory light-chain (RLC). The E22K-RLC mutation has been associated with a rare variant of cardiac hypertrophy defined by mid-left ventricular obstruction due to papillary muscle hypertrophy. This mutation was later found to cause ventricular and septal hypertrophy.
View Article and Find Full Text PDF