Bio-inspiration for novel adhesive development has drawn increasing interest in recent years with the discovery of the nanoscale morphology of the gecko footpad and mussel adhesive proteins. Similar to these animal systems, it was discovered that English ivy (Hedera helix L.) secretes a high strength adhesive containing uniform nanoparticles.
View Article and Find Full Text PDFThe self-polymerization of 4-chloromethylphenyltrichlorosilane (CMPS) was studied within spatially confined nanoholes on Si(111) using atomic force microscopy (AFM). Surface platforms of nanoholes were fabricated within a film of octadecyltrichlorosilane using immersion particle lithography. A heating step was developed to temporarily solder the silica mesospheres to the surface, to enable sustained immersion of mesoparticle masks in solvent solutions for the particle lithography protocol.
View Article and Find Full Text PDFParticle lithography offers generic capabilities for the high-throughput fabrication of nanopatterns from organosilane self-assembled monolayers, which offers the opportunity to study surface-based chemical reactions at the molecular level. Nanopatterns of octadecyltrichlorosilane (OTS) were prepared on surfaces of Si(111) using designed protocols of particle lithography combined with either vapor deposition, immersion, or contact printing. Changing the physical approaches for applying molecules to masked surfaces produced OTS nanostructures with different shapes and heights.
View Article and Find Full Text PDFControllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip.
View Article and Find Full Text PDFControllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip.
View Article and Find Full Text PDFIn this work, a zwitterionic molecular micelle, poly-epsilon-sodium-undecanoyl lysinate (poly-epsilon-SUK), was synthesized and employed as a coating in open tubular capillary electrochromatography (OT-CEC) for protein separation. The zwitterionic poly-epsilon-SUK containing both carboxylic acid and amine groups can be either protonated or deprotonated depending on the pH of the background electrolyte; therefore, either an overall positively or negatively charged coating can be achieved. This zwitterionic coating allows protein separations in either normal or reverse polarity mode depending on the pH of the background electrolyte.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2010
New cobalt(III) bis(dicarbollide) complexes covalently linked to two 2-oligothienyl units have been synthesized and electropolymerized in acetonitrile electrolyte in order to produce the corresponding polythiophene films containing in-chain metallic centers. The polymer films electrogenerated from the bithienyl (4b) and terthienyl (4c) derivatives display redox processes attributed to the Co(III)/Co(II) couple at ca. -1.
View Article and Find Full Text PDFCarborane-functionalized conducting polymer films have been electrogenerated in dichloromethane from the anodic oxidation of ortho- (1), meta- (3) and para-carborane (4) isomers linked to two 2-thienyl units. The corresponding electrochemical response was characterized by a broad reversible redox system corresponding to the p-doping/undoping of the polythiophene backbone, the formal potential of which increased in the order poly(1) < poly(3) < poly(4), from ca. 0.
View Article and Find Full Text PDFNanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force- induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons.
View Article and Find Full Text PDF