Background: Soil nutrient status and soil-borne diseases are pivotal factors impacting modern intensive agricultural production. The interplay among plants, soil microbiome, and nutrient regimes in agroecosystems is essential for developing effective disease management. However, the influence of nutrient availability on soil-borne disease suppression and associated plant-microbe interactions remains to be fully explored.
View Article and Find Full Text PDFThe spread of antibiotic resistance genes (ARGs) and subsequent soil-borne disease outbreaks are major threats to soil health and sustainable crop production. However, the relationship between occurrences of soil-borne diseases and the transmission of soil ARGs remains unclear. Here, soil ARGs, mobile genetic elements and microbial communities from co-located disease suppressive and conducive banana orchards were deciphered using metagenomics and metatranscriptomics approaches.
View Article and Find Full Text PDFThe presence of soil-borne disease obstacles and antibiotic resistance genes (ARGs) in soil leads to serious economic losses and health risks to humans. One area in need of attention is the evolution of ARGs as pathogenic soil gradually develops, which introduces uncertainty to the dynamic ability of conventional farming models to predict ARGs. Here, we investigated variations in tomato bacterial wilt disease accompanied by the resistome by metagenomic analysis in soils over 13 seasons of monoculture.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2023
The relationships among the relative abundance of guild-plant pathogenic fungi, compost maturation index, and microbial community variation during vegetable waste composting, which are influenced by the C/N ratio, remain poorly understood. To address this, fungal communities were analyzed in composting treatments with C/N ratios of approximately 15 (CN15) and 25 (CN25), using vegetable waste as the primary raw material. The CN15 treatment showed greater microbial community variation and a better overall compost maturation index value than the CN25 treatment.
View Article and Find Full Text PDFThe soil microbiota is critical to plant performance. Improving the ability of plant-associated soil probiotics is thus essential for establishing dependable and sustainable crop yields. Although fertilizer applications may provide an effective way of steering soil microbes, it is still unknown how the positive effects of soil-borne probiotics can be maximized and how their effects are mediated.
View Article and Find Full Text PDFThe role of plant genotype in determining the assembly of soil microorganisms is widely accepted; however, the effects of cropping with different cultivars of perennial crop plants on the composition of soil microbial communities are not fully understood. In the current study, high-throughput amplicon sequencing and real-time PCR were used to investigate the major features of bacterial community composition, ecological networks, and soil physicochemical properties in three replicate pear orchards, each planted with monocultures of pear cultivars Hosui (HS) or Sucui (SC) of similar ages. A distinct difference in the composition of microbial communities was observed between soils of HS and SC orchards.
View Article and Find Full Text PDFBeneficial interactions between plants and rhizosphere microorganisms are key determinants of plant health with the potential to enhance the sustainability of agricultural practices. However, pinpointing the mechanisms that determine plant disease protection is often difficult due to the complexity of microbial and plant-microbe interactions and their links with the plant's own defense systems. Here, we found that the resistance level of different banana varieties was correlated with the plant's ability to stimulate specific fungal taxa in the rhizosphere that are able to inhibit the Foc TR4 pathogen.
View Article and Find Full Text PDFMembers of the microbiotas colonizing the plant endophytic compartments and the surrounding bulk and rhizosphere soil play an important role in determining plant health. However, the relative contributions of the soil and endophytic microbiomes and their mechanistic roles in achieving disease suppression remain elusive. To disentangle the relative importance of the different microbiomes in the various plant compartments in inhibiting pathogen infection, we conducted a field experiment to track changes in the composition of microbial communities in bulk and rhizosphere soil and of root endophytes and leaf endosphere collected from bananas planted on Fusarium-infested orchards in disease-suppressive and disease-conducive soils.
View Article and Find Full Text PDFHost-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum.
View Article and Find Full Text PDFThe rhizosphere is an extremely important component of the "one health" scenario by linking the soil microbiome and plants, in which the potential enrichment of antibiotic resistance genes (ARGs) might ultimately flow into the human food chain. Despite the increased occurrence of soil-borne diseases, which can lead to increased use of pesticides and antibiotic-producing biocontrol agents, the understanding of the dynamics of ARG spread in the rhizosphere is largely overlooked. Here, tomato seedlings grown in soils conducive and suppressive to the pathogen were selected as a model to investigate ARG spread in the rhizosphere with and without pathogen invasion.
View Article and Find Full Text PDFBeneficial host-associated bacteria can assist plant protection against pathogens. In particular, specific microbes are able to induce plant systemic resistance. However, it remains largely elusive which specific microbial taxa and functions trigger plant immune responses associated with disease suppression.
View Article and Find Full Text PDFMicrobial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems. To disentangle the mechanisms underlying suppression of banana Panama disease caused by f. sp.
View Article and Find Full Text PDFGlobal climate change has emerged as a critical environmental problem. Different types of climate extremes drive soil microbial communities to alternative states, leading to a series of consequences for soil microbial ecosystems and related functions. An effective method is urgently needed for buffering microbial communities to tackle environmental disturbances.
View Article and Find Full Text PDFThe effects of different fertilization on microbial communities and resistome in agricultural soils with a history of fresh manure application remains largely unclear. Here, soil antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and microbial communities were deciphered using metagenomics approach from a long-term field experiment with different fertilizer inputs. A total of 541 ARG subtypes were identified, with Multidrug, Macrolides-Lincosamides-Streptogramins (MLS), and Bacitracin resistance genes as the most universal ARG types.
View Article and Find Full Text PDFIntroduction: The soil bacterial microbiome plays a crucial role in ecosystem functioning. The composition and functioning of the microbiome are tightly controlled by the physicochemical surrounding. Therefore, the microbiome is responsive to management, such as fertilization, and to climate change, such as extreme drought.
View Article and Find Full Text PDFPlant health is strongly impacted by beneficial and pathogenic plant microbes, which are themselves structured by resource inputs. Organic fertilizer inputs may thus offer a means of steering soil-borne microbes, thereby affecting plant health. Concurrently, soil microbes are subject to top-down control by predators, particularly protists.
View Article and Find Full Text PDFBackground: The development of suppressive soils is a promising strategy to protect plants against soil-borne diseases in a sustainable and viable manner. The use of crop rotation and the incorporation of plant residues into the soil are known to alleviate the stress imposed by soil pathogens through dynamics changes in soil biological and physicochemical properties. However, relatively little is known about the extent to which specific soil amendments of plant residues trigger the development of plant-protective microbiomes.
View Article and Find Full Text PDFSoil microbiome manipulation can potentially reduce the use of pesticides by improving the ability of soils to resist or recover from pathogen infestation, thus generating natural suppressiveness. We simulated disturbance through soil fumigation and investigated how the subsequent application of bio-organic and organic amendments reshapes the taxonomic and functional potential of the soil microbiome to suppress the pathogens Ralstonia solanacearum and Fusarium oxysporum in tomato monocultures. The use of organic amendment alone generated smaller shifts in bacterial and fungal community composition and no suppressiveness.
View Article and Find Full Text PDFTaking banana continuous planting soil with high banana fusarium wilt disease incidence as a test site, we examined the effect of lime and ammonium carbonate fumigation coupled with bio-organic fertilizer on the suppression of banana fusarium wilt disease and the structure and composition of bacterial community, using real-time quantitative PCR and high-throughput sequencing. The results showed that the disease incidence was reduced by 13.3% and 21.
View Article and Find Full Text PDFBackground: Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e.
View Article and Find Full Text PDFThe carbon to nitrogen ratio (C/N) is well known for its importance in the composting process, however the fiber degradation and humification associated with enzymatic activity and microbial variation derived from different C/N ratios are poorly studied. Here, we designed two treatments of chicken manure with 15% (initial C/N ratio 9.61) and 50% (initial C/N ratio 17.
View Article and Find Full Text PDFSoil-borne diseases, especially those caused by fungal pathogens, lead to profound annual yield losses. One key example for such a disease is Fusarium wilt disease in banana. In some soils, plants do not show disease symptoms, even if the disease-causing pathogens are present.
View Article and Find Full Text PDFSurvival of inoculated fungal strains in a new environment plays a critical role in functional performance, but few studies have focused on strain-specific quantitative PCR (qPCR) methods for monitoring beneficial fungi. In this study, the Trichoderma guizhouense strain NJAU 4742 (transformed with the gfp gene and named gfp-NJAU 4742), which exhibits a growth-promoting effect by means of phytohormone production and pathogen antagonism, was selected as a model to design strain-specific primer pairs using two steps of genomic sequence comparison to detect its abundance in soil. After a second comparison with the closely related species T.
View Article and Find Full Text PDFFront Plant Sci
September 2019
Fusaric acid (FA) is an important secondary metabolite of many Fusarium species and involved in the wilt symptoms caused in banana by f. sp. .
View Article and Find Full Text PDFFEMS Microbiol Ecol
October 2019
Rhizosphere community assembly is simultaneously affected by both plants and bulk soils and is vital for plant health. However, it is still unclear how and to what extent disease-suppressive rhizosphere microbiota can be constructed from bulk soil, and the underlying agents involved in the process that render the rhizosphere suppressive against pathogenic microbes remain elusive. In this study, the evolutionary processes of the rhizosphere microbiome were explored based on transplanting plants previously growing in distinct disease-incidence soils to one disease-suppressive soil.
View Article and Find Full Text PDF