Publications by authors named "Zongyan Han"

In zero-shot learning (ZSL), attribute knowledge plays a vital role in transferring knowledge from seen classes to unseen classes. However, most existing ZSL methods learn biased attribute knowledge, which usually results in biased attribute prediction and a decline in zero-shot recognition performance. To solve this problem and learn unbiased attribute knowledge, we propose a visual attribute Transformer for zero-shot recognition (ZS-VAT), which is an effective and interpretable Transformer designed specifically for ZSL.

View Article and Find Full Text PDF

Block-diagonal representation (BDR) is an effective subspace clustering method. The existing BDR methods usually obtain a self-expression coefficient matrix from the original features by a shallow linear model. However, the underlying structure of real-world data is often nonlinear, thus those methods cannot faithfully reflect the intrinsic relationship among samples.

View Article and Find Full Text PDF