Cotton stands as a pillar in the textile industry due to its superior natural fibers. Lignin, a complex polymer synthesized from phenylalanine and deposited in mature cotton fibers, is believed to be essential for fiber quality, although the precise effects remain largely unclear. In this study, we characterized two ubiquitously expressed cinnamyl alcohol dehydrogenases (CAD), GhCAD37A and GhCAD37D (GhCAD37A/D), in Gossypium hirsutum.
View Article and Find Full Text PDFVerticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V.
View Article and Find Full Text PDFIn plants, long noncoding RNAs (lncRNAs) regulate disease resistance against fungi and other pathogens. However, the specific mechanism behind this regulation remains unclear. In this study, we identified disease resistance-related lncRNAs as well as their regulating genes and assessed their functions by infection of cotton (Gossypium) chromosome segment substitution lines with Verticillium dahliae.
View Article and Find Full Text PDFWe combined traditional mRNA-seq and RNC-seq together to reveal post-transcriptional regulation events impacting gene expression and interactions between the serious fungal pathogen Verticillium dahliae and a susceptible host, Gossypium hirsutum TM-1. After screening the differentially expressed and translated genes, V. dahliae infection was observed to influence gene transcription and translation in its host.
View Article and Find Full Text PDFPlant architecture, including branching pattern, is an important agronomic trait of cotton crops. In recent years, strigolactones (SLs) have been considered important plant hormones that regulate branch development. In some species such as Arabidopsis, DWARF14 is an unconventional receptor that plays an important role in the SL signaling pathway.
View Article and Find Full Text PDFElucidating the mechanism of resistance to biotic and abiotic stress is of great importance in cotton. In this study, a gene containing the NAC domain, designated GbNAC1, was identified from Gossypium barbadense L. Homologous sequence alignment indicated that GbNAC1 belongs to the TERN subgroup.
View Article and Find Full Text PDF