Publications by authors named "Zongxin Yu"

A ferrofluid droplet confined in a Hele-Shaw cell can be deformed into a stably spinning "gear," using crossed magnetic fields. Previously, fully nonlinear simulation revealed that the spinning gear emerges as a stable traveling wave along the droplet's interface bifurcates from the trivial (equilibrium) shape. In this work, a center manifold reduction is applied to show the geometrical equivalence between a two-harmonic-mode coupled system of ordinary differential equations arising from a weakly nonlinear analysis of the interface shape and a Hopf bifurcation.

View Article and Find Full Text PDF

Two-dimensional free surface flows in Hele-Shaw configurations are a fertile ground for exploring nonlinear physics. Since Saffman and Taylor's work on linear instability of fluid-fluid interfaces, significant effort has been expended to determining the physics and forcing that set the linear growth rate. However, linear stability does not always imply nonlinear stability.

View Article and Find Full Text PDF