Current battery production relies on the use of large amounts of N-methyl-2-pyrrolidnone (NMP) solvent during electrode preparation, which raises serious concerns in material cost, energy consumption, and toxicity, thus demanding the innovation of dry electrodes with excellent performance. However, state-of-the-art dry electrodes show inferior energy densities, particularly under high-areal-capacity and fast charge/discharge conditions required for practical applications. Here dry production of high-energy-density Li- and Mn-rich (LMR) cathodes is shown based on a thermal-assistant approach.
View Article and Find Full Text PDFThe unstable solid electrolyte interface (SEI) formed by uncontrollable electrolyte degradation, which leads to dendrite growth and Coulombic efficiency decay, hinders the development of Li metal anodes. A controllable desolvation process is essential for the formation of stable SEI and improved lithium metal deposition behavior. Here, we show a functional artificial interface protective layer comprised of chondroitin sulfate-reduced graphene oxide (CrG), on which polar functional groups are distributed to effectively reduce the energy barrier for desolvation of Li and effectively alienate solvent molecules to avoid solvent involvement in SEI formation, thus promoting the formation of a LiF-rich SEI.
View Article and Find Full Text PDFWind energy is the most promising alternative to fossil fuels as a clean, nonpolluting, and renewable source of energy. However, how to achieve stable and efficient harvesting of wind energy has been a major challenge. Here, a triboelectric-electromagnetic-piezoelectric hybrid wind energy harvester (TEP-WEH) based on the cantilever is proposed.
View Article and Find Full Text PDFAn abundant hollow nanostructure is crucial for fast Li and K diffusion paths and sufficient electrolyte penetration, which creates a highly conductive network for ionic and electronic transport. In this study, we successfully developed a molecular-bridge-linked, organic-inorganic hybrid interface that enables the preparation of in situ nitrogen-doped hollow carbon nanospheres. Moreover, the prepared HCNSs, with high nitrogen content of up to 10.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2023
Chlorine (Cl)-based batteries such as Li/Cl batteries are recognized as promising candidates for energy storage with low cost and high performance. However, the current use of Li metal anodes in Cl-based batteries has raised serious concerns regarding safety, cost, and production complexity. More importantly, the well-documented parasitic reactions between Li metal and Cl-based electrolytes require a large excess of Li metal, which inevitably sacrifices the electrochemical performance of the full cell.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2023
Anode-free lithium (Li) metal batteries are desirable candidates in pursuit of high-energy-density batteries. However, their poor cycling performances originated from the unsatisfactory reversibility of Li plating/stripping remains a grand challenge. Here we show a facile and scalable approach to produce high-performing anode-free Li metal batteries using a bioinspired and ultrathin (250 nm) interphase layer comprised of triethylamine germanate.
View Article and Find Full Text PDFPotassium-ion battery represents a promising alternative of conventional lithium-ion batteries in sustainable and grid-scale energy storage. Among various anode materials, elemental phosphorus (P) has been actively pursued owing to the ideal natural abundance, theoretical capacity, and electrode potential. However, the sluggish redox kinetics of elemental P has hindered fast and deep potassiation process toward the formation of final potassiation product (K P), which leads to inferior reversible capacity and rate performance.
View Article and Find Full Text PDF