Skyrmions, a stable topological vectorial textures characteristic with skyrmionic number, hold promise for advanced applications in information storage and transmission. While the dynamic motion control of skyrmions has been realized with various techniques in magnetics and optics, the manipulation of acoustic skyrmion has not been done. Here, the propagation and control of acoustic skyrmion along a chain of metastructures are shown.
View Article and Find Full Text PDFIn this paper, we use a pair of self-resonating subwavelength spoof plasmonic structures to achieve remote non-radiative terahertz wireless power transfer, while nearly without affecting the electromagnetic environment of free space around the structure. The resonating frequency and quality factor of the magnetic dipole mode supported by the spoof plasmonic structures can be freely tuned by tailoring the geometric structure. By putting the weak source and detector into the self-resonating structures, we can find that the effective non-radiative terahertz power transferring distance can reach several hundred times the radius of the structures.
View Article and Find Full Text PDFHerein, a facile chemical solution deposition (CSD) strategy is adopted to synthesize LaNiO (LNO) thin films with an obvious porous structure (P-LNO). It is demonstrated that the porous structure can greatly promote the OER performance of LNO, requiring an overpotential of 367 mV to achieve 10 mA cm, which is much lower than that of a normal LNO thin film (478 mV). As revealed by the following experimental results, the presence of the porous structure offers more exposed active sites and promotes electron transfer between catalysts and electrolyte, giving rise to an enhanced OER performance of the P-LNO film.
View Article and Find Full Text PDFA new kind of partially coherent vector vortex beam, namely, the partially coherent radially polarized (PCRP) beam with multiple off-axis vortices, is introduced, and the average intensity distributions of such vortex beam focused by a thin lens are investigated theoretically. It is novelty that the off-axis vortices will induce the focal intensity redistribution and reconstruction, while this remarkable characteristic will be vanished in the case of a very low coherence. In view of this distinctive feature, a new method has been put forward to shape or modulate the focal intensity distribution by elaborately tailoring the multiple off-axis vortices as well as the coherence length.
View Article and Find Full Text PDFIn this paper, we have introduced a new class of partially coherent vector vortex beams, named radially polarized multi-Gaussian Schell-model (MGSM) vortex beam, carrying the vortex phase with tunable topological charges (i.e., both integral and fractional values) as a natural extension of the radially polarized MGSM beam.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2018
The evolution properties of the normalized intensity distribution, the spectral degree of coherence (SDOC), and the spectral degree of polarization (SDOP) of the radially polarized multi-Gaussian Schell-model (MGSM) beam in uniaxial crystals are illustrated. Numerical results show that the intensity distribution of the radially polarized MGSM beam gradually evolves from a doughnut shape into an elliptical symmetric flattop shape and retains its elliptical flattop shape on further propagation in anisotropic crystals. The evolution behavior of the SDOC and SDOP for the radially polarized MGSM beam is quite different from that of the linearly polarized one.
View Article and Find Full Text PDFIn this paper, we introduce a new kind of partially coherent vector beam with special correlation function and vortex phase named radially polarized Laguerre-Gaussian-correlated Schell-model (LGCSM) vortex beam as a natural extension of scalar LGCSM vortex beam. The realizability conditions for such beam are derived. The tight focusing properties of a radially polarized LGCSM vortex beam passing through a high numerical aperture (NA) objective lens are investigated numerically based on the vectorial diffraction theory.
View Article and Find Full Text PDFIt has been recently shown that a solid-textured metal cylinder can support electric and magnetic dipolar resonances simultaneously [Phys. Rev. X4, 021003 (2014)PRXHAE2160-330810.
View Article and Find Full Text PDF