Publications by authors named "Zongming Xie"

Background: Verticillium wilt is a critical disease affecting cotton in the Xinjiang province, a region producing 90% cotton in China. Defining the specific temperature thresholds for disease prevalence is essential but has remained unclear.

Results: This study aimed to establish a model to quantify the relationship between temperature and cotton verticillium wilt disease risk.

View Article and Find Full Text PDF

Solar thermoelectric generators (STEGs) consisting of solar absorbers and thermoelectric generators (TEGs) can utilize solar energy to generate electrical power. However, performances of STEGs are limited by the heat losses of solar absorbers in air, which become more and more significant with an increase in the solar absorbing area. Herein, we describe the preparation of Au@AgPd nanostructure monolayer/poly(vinyl alcohol) (PVA) Janus photothermal films with broadband plasmonic absorption in the visible and near-infrared regions.

View Article and Find Full Text PDF

Low temperature and cold damage seriously hinder the growth, development, and morphogenesis of cotton seedlings. However, the response mechanism of cotton seedlings under cold stress still lacks research. In this study, transcriptome sequencing, gas exchange parameters, and rapid chlorophyll fluorescence parameters were analyzed in leaves of cold-tolerant upland cotton variety "ZM36" under different temperature stress [25°C (T25, CK), 15°C (T15), 10°C (T10), and 4°C (T4)].

View Article and Find Full Text PDF

China produces and consumes the largest amount of cotton, playing a critical role in the world's fiber and textile industries. Theoretically, an increase in temperature poses a complex set of impacts on both cotton and pathogen diseases. However, empirical evidence regarding the overall effect on regional cotton yield in China is currently lacking.

View Article and Find Full Text PDF

Background: Cottonseed oil is a promising edible plant oil with abundant unsaturated fatty acids. However, few studies have been conducted to explore the characteristics of cottonseed oil. The molecular mechanism of cottonseed oil accumulation remains unclear.

View Article and Find Full Text PDF

Cotton ( L.) is the world's most economically valuable textile crop. However, cotton plants are often subjected to numerous abiotic stresses that can dramatically limit yield.

View Article and Find Full Text PDF

GhSCL13-2A, a member of the PAT1 subfamily in the GRAS family, positively regulates cotton resistance to Verticillium dahliae by mediating the jasmonic acid and salicylic acid signaling pathways and accumulation of reactive oxygen species. Verticillium wilt (VW) is a devastating disease of upland cotton (Gossypium hirsutum) that is primarily caused by the soil-borne fungus Verticillium dahliae. Scarecrow-like (SCL) proteins are known to be involved in plant abiotic and biotic stress responses, but their roles in cotton defense responses are still unclear.

View Article and Find Full Text PDF

Cotton ( L.), the most important textile crop worldwide, often encounters abiotic stress during its growing season and its productivity is significantly limited by adverse factors. Trihelix transcription factors (also known as GT factors) are important proteins involved in the morphological development and responses to abiotic stress in plants.

View Article and Find Full Text PDF

Powdery mildew is a major disease in melon, primarily caused by Podosphaera xanthii (Px). Some melon varieties were resistant to powdery mildew, while others were susceptible. However, the candidate genes associated with resistance and the mechanism of resistance/susceptibility to powdery mildew in melon remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • - The study identified brassinosteroid (BR) synthesis genes in different cotton species, particularly focusing on Gossypium hirsutum, with a total of 33 genes analyzed across three cotton species.
  • - GhCPD-3 was found to play a significant role in the BR synthesis signaling pathway, promoting plant growth and development, especially in roots and stems.
  • - Overexpressing GhCPD-3 in a mutant Arabidopsis increased plant height and leaf size, indicating its potential to enhance BR biosynthesis and subsequently boost plant growth traits like hypocotyl and root lengths.
View Article and Find Full Text PDF

Large-scale genomic surveys of crop germplasm are important for understanding the genetic architecture of favorable traits. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton is poorly understood. Here, we analyzed 3,248 tetraploid cotton genomes and confirmed that the extensive chromosome inversions on chromosomes A06 and A08 underlies the geographic differentiation in cultivated Gossypium hirsutum.

View Article and Find Full Text PDF

Trihelix transcription factors are important proteins involved in response to abiotic stresses in plants. Understanding the molecular mechanisms of Trihelix in cottons will lay the foundation to improve stress tolerance by gene engineering. In this study, a gene encoding Trihelix transcription factor was isolated in upland cottons using reverse transcription PCR according to bioinformatic analysis.

View Article and Find Full Text PDF

Background: Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance.

View Article and Find Full Text PDF

Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds.

View Article and Find Full Text PDF

WRKY-type transcription factors have multiple roles in the plant defence response and developmental processes. Their roles in the abiotic stress response remain obscure. In this study, 64 GmWRKY genes from soybean were identified, and were found to be differentially expressed under abiotic stresses.

View Article and Find Full Text PDF

Cell division is a fundamental biological process sharing conserved features and controls in all eukaryotes. The cell cycle is usually divided into four phases: G1, S, G2, and M. Regulated gene expression is an important mechanism for controlling cell cycle progression and genes involved in cell division-related processes often show transcriptional regulation dependent on cell cycle position.

View Article and Find Full Text PDF