A novel and robust epidermal strain gauge by using 3D microsphere arrays to immobilize, connect, and protect a multiwalled carbon nanotubes (MWNTs) pathway is presented. During the solvent deposition process, MWNTs sedimentate, self-assemble, and wrap onto surface of polystyrene (PS) microspheres to construct conductive networks, which further obtain excellent stretchability of 100% by combining with commercially used elastomer. Benefiting from its 3D conductive pathway defined by microspheres, immobilized MWNT (I-MWNT) network can be directly used in practical occasions without further packaging and is proved by tape tests to be capable of defend mechanical damage effectively from external environment.
View Article and Find Full Text PDFRapid improvement of wearable electronics stimulates the demands for the matched functional devices and energy storage devices. Meanwhile, wearable microsystem requires every parts possessing high compressibility to accommodate large-scale mechanical deformations and complex conditions. In this work, a general carbon nanotube-polydimethylsiloxane (CNT-PDMS) sponge electrode is fabricated as the elementary component of the compressible system.
View Article and Find Full Text PDFIn this paper, we report a novel nanoscale wrinkle-structure fabrication process using fluorocarbon plasma on poly(dimethylsiloxane) (PDMS) and Solaris membranes. Wrinkles with wavelengths of hundreds of nanometers were obtained on these two materials, showing that the fabrication process was universally applicable. By varying the plasma-treating time, the wavelength of the wrinkle structure could be controlled.
View Article and Find Full Text PDFA wave-shaped hybrid nanogenerator (NG) with mutually enhanced piezoelectric and triboelectric output is presented in this work. By sandwiching piezoelectric P(VDF-TrFE) nanofibers between wave-shaped Kapton films, the device forms a three-layer structure, which can generate piezoelectric and triboelectric outputs simultaneously in one press and release cycle. Through systematic situational analysis and experimental validation, the three-layer structure can achieve obvious improvement of the output performance for both parts.
View Article and Find Full Text PDFAs the essential element of a triboelectric nanogenerator (TENG), friction layers play key roles that determine the device performance, which can be enhanced by material selection and surface modification. In this work, we have embedded aligned carbon nanotubes (CNTs) on the polydimethylsiloxane (PDMS) surface as the effective dielectric layer to donate electrons. This layer not only increases the electron generation for the output, but also shows notable stretchability.
View Article and Find Full Text PDFThe progress of smart skin technology presents unprecedented opportunities for artificial intelligence. Resolution enhancement and energy conservation are critical to improve the perception and standby time of robots. Here, we present a self-powered analogue smart skin for detecting contact location and velocity of the object, based on a single-electrode contact electrification effect and planar electrostatic induction.
View Article and Find Full Text PDFA triboelectric nanogenerator (TENG) has been thought to be a promising method to harvest energy from environment. To date, the utilization of surface structure and material modification has been considered the most effective way to increase its performance. In this work, a wrinkle structure based high-performance TENG is presented.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2004
Structure and dynamics of Taxus chinensis var. mairei clonal population were studied. The results showed that according to the life history of Taxus chinensis var.
View Article and Find Full Text PDF