is one of the most destructive pathogens in strawberry cultivation. Successful infection by requires releasing a large number of effectors that interfere with the plant's immune system. One of the effectors required by for optimal virulence is the secreted protein BcXYG1, which is thought to associate with proteins near the plasma membrane of the host plant to induce necrosis.
View Article and Find Full Text PDFCryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood.
View Article and Find Full Text PDFSugars and organic acids significantly impact fruit sensory quality, but their accumulation patterns and regulatory mechanisms during the development of fruit are still unclear. We utilized transcriptomics and metabolomics to investigate genes related to sugar and organic acid metabolism in . Metabolomics data revealed that sucrose, glucose and fructose were the primary sugars, whereas citric acid and malic acid were the primary organic acids in fruit.
View Article and Find Full Text PDFBackground: The plant hormone auxin is widely involved in plant growth, development, and morphogenesis, and the TIR1/AFB and AUX/IAA proteins are closely linked to rapid auxin response and signal transmission. However, their evolutionary history, historical patterns of expansion and contraction, and changes in interaction relationships are still unknown.
Results: Here, we analyzed the gene duplications, interactions, and expression patterns of TIR1/AFBs and AUX/IAAs to understand their underlying mechanisms of evolution.
Arbuscular mycorrhizal symbiosis (AMS) is widespread mutualistic association between plants and fungi, which plays an essential role in nutrient exchange, enhancement in plant stress resistance, development of host, and ecosystem sustainability. Previous studies have shown that plant small secreted proteins (SSPs) are involved in beneficial symbiotic interactions. However, the role of SSPs in the evolution of AMS has not been well studied yet.
View Article and Find Full Text PDFPathogen invasion leads to fast, local-to-systemic signal transduction that initiates plant defense responses. Despite tremendous progress in past decades, aspects of this process remain unknown, such as which cell types respond first and how signals are transferred among cell types. Here, we used single-cell RNA-seq of more than 50 000 single cells to document the gene expression landscape in leaves of woodland strawberry during infection by Botrytis cinerea and identify major cell types.
View Article and Find Full Text PDFRosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R.
View Article and Find Full Text PDFSmall secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture.
View Article and Find Full Text PDF1-Methylcyclopropene (1-MCP) is an inhibitor of ethylene perception that is widely used to maintain the quality of several climacteric fruits during storage. A large body of literature now exists on the effects of 1-MCP on climacteric fruit ripening for different species and environmental conditions, presenting an opportunity to use meta-analysis to systematically dissect these effects. We classified 44 ripening indicators of climacteric fruits into five categories: physiology and biochemistry, quality, enzyme activity, color, and volatiles.
View Article and Find Full Text PDFEukaryotic genes can be classified into intronless (no introns), intron-poor (three or fewer introns per gene) or intron-rich. Early eukaryotic genes were mostly intron-rich, and their alternative splicing into multiple transcripts, giving rise to different proteins, might have played pivotal roles in adaptation and evolution. Interestingly, extant plant genomes contain many gene families with one or sometimes few sub-families with genes that are intron-poor or intronless, and it remains unknown when and how these intron-poor or intronless genes have originated and evolved, and what their possible functions are.
View Article and Find Full Text PDFBackground: Protein kinases (PKs) play an important role in signaling cascades and are one of the largest and most conserved protein super families in plants. Despite their importance, the woodland strawberry (Fragaria vesca) kinome and expression patterns of PK genes remain to be characterized.
Results: Here, we report on the identification and classification of 954 Fragaria vesca PK genes, which were classified into nine groups and 124 gene families.
Adventitious root (AR) formation is critical for the efficient propagation of elite horticultural and forestry crops. Despite decades of research, the cellular processes and molecular mechanisms underlying AR induction in woody plants remain obscure. We examined the details of AR formation in apple () M.
View Article and Find Full Text PDFBackground: The mitogen-activated protein kinases (MAPKs), as a part of the MAPKKK-MAPKK-MAPK cascade, play crucial roles in plant development as an intracellular signal transduction pathway to respond various environmental signals. However, few MAPKK have been functionally characterized in grapevine.
Results: In the study, five MAPKK (MKK) members were identified in grapevine (cultivar 'Pinot Noir'), cloned and designated as VvMKK1-VvMKK5.
Background: Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level.
View Article and Find Full Text PDFSalt stress is one of the major environmental constraints for the production and yield of grape (Vitis vinifera) worldwide. The SOS3 gene family is part of the Salt Overly Sensitive (SOS) signaling pathway, a well-defined signaling pathway known to play a role in plant response to salt stress. In this study, the grapevine SOS3 gene family was annotated and the role of the annotated genes in salinity stress response was characterized.
View Article and Find Full Text PDFBackground: Crassulacean acid metabolism (CAM) plants use water 20-80% more efficiently by shifting stomata opening and primary CO uptake and fixation to the nighttime. Protein kinases (PKs) play pivotal roles in this biological process. However, few PKs have been functionally analyzed precisely due to their abundance and potential functional redundancy (caused by numerous gene duplications).
View Article and Find Full Text PDFDNA methylation plays important roles in genome protection and the regulation of gene expression and it is associated with plants' responses to environments. DNA demethylases are very important proteins in DNA methylation regulation. In this study, we performed genome-wide and deep analysis of putative demethylases (DMEs) in pear.
View Article and Find Full Text PDFBackground: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals.
View Article and Find Full Text PDFProtein kinases (PKs) have evolved as the largest family of molecular switches that regulate protein activities associated with almost all essential cellular functions. Only a fraction of plant PKs, however, have been functionally characterized even in model plant species. In the present study, the entire grapevine kinome was identified and annotated using the most recent version of the grapevine genome.
View Article and Find Full Text PDFCalcium plays a central role in regulating signal transduction pathways. Calcineurin B-like proteins (CBLs), which harbor a crucial region consisting of EF hands that capture Ca, interact in a specific manner with CBL-interacting protein kinases (CIPKs). This two gene families or their interacting-complex widely respond to various environment stimuli and development processes.
View Article and Find Full Text PDFEukaryotes utilize Ca as a universal second messenger to convert and multiply environmental and developmental signals to downstream protein phosphorylation responses. However, the phylogenetic relationships of the genes that convert Ca signal (CS) to protein phosphorylation responses (PPRs) remain highly controversial, and their origin and evolutionary trajectory are unclear, which greatly hinders functional studies. Here we examined the deep phylogeny of eukaryotic CS converter gene families and identified a phylogenetically and structurally distinctive monophyly in Archaeplastida.
View Article and Find Full Text PDFA genome-wide identification and cloning of CaM genes in pear was conducted and in compared with that indicated a conserved expansion of CaM genes in pear, and PbCaMs and AtCaMs had a similar distribution of cis-elements and expressions in response to salt and osmotic stress. In particular, PbCaM1 and PbCaM3 were both significantly upregulated in response to salt and osmotic stress in pear.
View Article and Find Full Text PDFDuplication, lateral gene transfer, domain fusion/fission and de novo domain creation play a key role in formation of initial common ancestral protein. Abundant protein diversities are produced by domain rearrangements, including fusions, fissions, duplications, and terminal domain losses. In this report, we explored the origin of the RPW8 domain and examined the domain rearrangements that have driven the evolution of RPW8-encoding genes in land plants.
View Article and Find Full Text PDF