All-optical wavelength conversion based on four-wave mixing attracts intense interest in many areas, especially in optical fiber communications, due to the advantages of femtosecond response, modulation-format transparency, and high flexibility in optical network management. In this paper, we present the first optical translation of 32-GBaud 16QAM signals with an integrated SiN nonlinear nanophotonic waveguide. An on-chip continuous-wave conversion efficiency of up to -0.
View Article and Find Full Text PDFThe throughput and reach in fiber-optic communication links are limited by in-line optical amplifier noise and the Kerr nonlinearity in the optical transmission fiber. Phase-sensitive amplifiers (PSAs) are capable of amplifying signals without adding excess noise and mitigating the impairments caused by the Kerr nonlinearity. However, the effectiveness of Kerr nonlinearity mitigation depends on the dispersion pre-compensation in each span.
View Article and Find Full Text PDFWe quantify the maximum transmission reach for phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA) links with different modulation formats and show that the maximum transmission reach increase (MTRI) when using PSAs compared to PIAs is enhanced for higher-order modulation formats. The higher-order modulation formats are more susceptible to smaller phase rotations from nonlinearities, and PSAs are efficient in mitigating these smaller phase distortions. Numerical simulations were performed for single- and multi-span PIA and PSA links with single and multiple wavelength channels.
View Article and Find Full Text PDFThe probabilistic constellation shaping (PCS) technology has recently gained a great deal of attention for coherent optical communication systems since it allows us to approach the Shannon capacity limit by varying the symbol distribution adaptively to the signal-to-noise ratio (SNR). However, there is a lack of literature on how to apply this technology to intensity modulation (IM)/direct detection (DD) systems. In this paper, we propose and demonstrate an efficient way to apply the PCS technology for IM/DD systems.
View Article and Find Full Text PDF