Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFControlling the bandwidth and directionality of thermal emission is important for a broad range of applications, from imaging and sensing to energy harvesting. Here, we propose a new, to the best of our knowledge, type of long-wavelength infrared narrowband thermal emitter that is basically composed of aperiodic Tamm plasmon polariton structures. Compared to the thermal emitter based on periodic structures, more parameters need to be considered.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Metasurfaces have recently experienced revolutionary progress in sensing and super-resolution imaging fields, mainly due to their manipulation of electromagnetic waves on subwavelength scales. However, on the one hand, the addition of metasurfaces can multiply the complexity of retrieving target information from detected electromagnetic fields. On the other hand, many existing studies utilize deep learning methods to provide compelling tools for electromagnetic problems but mainly concentrate on resolving one single function, limiting their versatilities.
View Article and Find Full Text PDFSurface waves (SWs) are of great importance in terahertz (THz) photonics applications due to their subwavelength properties. Hence, it is crucial to develop surface wavefront shaping techniques, which is urgent in modern information technologies. In this paper, a new scheme is proposed to realize SW excitation and spin-decoupled wavefront shaping with an ultracompact planar meta-device working in the THz range.
View Article and Find Full Text PDF