Publications by authors named "Zongjun Yu"

Nicotinamide adenine dinucleotide (NAD) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD deficiency in qs-2 caused by mutation in NAD biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance.

View Article and Find Full Text PDF

Dysregulation of polyamine homeostasis strongly associates with human diseases. ATP13A2, which is mutated in juvenile-onset Parkinson's disease and autosomal recessive spastic paraplegia 78, is a transporter with a critical role in balancing the polyamine concentration between the lysosome and the cytosol. Here, to better understand human ATP13A2-mediated polyamine transport, we use single-particle cryo-electron microscopy to solve high-resolution structures of human ATP13A2 in six intermediate states, including the putative E2 structure for the P5 subfamily of the P-type ATPases.

View Article and Find Full Text PDF

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases.

View Article and Find Full Text PDF
Article Synopsis
  • Plants produce a wide variety of signaling metabolites, but many remain undiscovered, creating a gap in our understanding.
  • Multi-omics approaches have accelerated the identification of new plant signaling molecules and their functions by integrating different biological data.
  • The review discusses how multi-omics can tackle challenges in plant metabolite discovery and explores current limitations and future prospects in this research area.
View Article and Find Full Text PDF

Vascular embolization is a well-known therapeutic treatment against hepatocellular carcinoma. However, existing embolic agents require complex synthesis, toxic organic solvents and sometimes produce only low yields. In this study, a novel photopolymerization technique, which addresses these issues, was used to prepare embolic microspheres successfully from the sucrose multi-allyl ether monomer in one step.

View Article and Find Full Text PDF

Transcatheter arterial chemoembolization (TACE) is well known as an effective treatment for inoperable hepatocellular carcinoma (HCC). In this study, a novel embolic agent of ion-exchange poly(hydroxyethyl methacrylate-acrylic acid) microspheres (HAMs) was successfully synthesized by the inverse suspension polymerization method. Then, HAMs were assessed for their activity as an embolic agent by investigating morphology, particle size, water retention capability, elasticity and viscoelasticity, microcatheter/catheter deliverability, cytotoxicity, renal arterial embolization to rabbits and histopathological examinations.

View Article and Find Full Text PDF