Organ banking by vitrification could revolutionize transplant medicine. However, vitrification and rewarming have never been demonstrated at the human organ scale. Using modeling and experimentation, we tested the ability to vitrify and rewarm 0.
View Article and Find Full Text PDFCritical cooling and warming rates (CCR and CWR) are two important calorimetric properties of cryoprotective agents (CPA) solutions, and achieving these rates is generally regarded as the critical criterion for successful vitrification and rewarming. In 1996, Peyridieu et al. discovered that the measured critical rates are reduced inside kidney tissue equilibrated with 30 % (w/w) 2,3-butanediol compared to its free CPA solution.
View Article and Find Full Text PDFEffective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming.
View Article and Find Full Text PDFVitrification could enable long-term organ preservation, but only after loading high-concentration, potentially toxic cryoprotective agents (CPAs) by perfusion. In this paper, we combine a two-compartment Krogh cylinder model with a toxicity cost function to theoretically optimize the loading of CPA (VMP) in rat kidneys as a model system. First, based on kidney perfusion experiments, we systematically derived the parameters for a CPA transport loading model, including the following: V = 86.
View Article and Find Full Text PDFBanking cryopreserved organs could transform transplantation into a planned procedure that more equitably reaches patients regardless of geographical and time constraints. Previous organ cryopreservation attempts have failed primarily due to ice formation, but a promising alternative is vitrification, or the rapid cooling of organs to a stable, ice-free, glass-like state. However, rewarming of vitrified organs can similarly fail due to ice crystallization if rewarming is too slow or cracking from thermal stress if rewarming is not uniform.
View Article and Find Full Text PDFCryopreservation by vitrification has far-reaching implications. However, rewarming techniques that are rapid and scalable (both in throughput and biosystem size) for low concentrations of cryoprotective agent (CPA) for reduced toxicity are lacking, limiting the potential for translation. Here, we introduce a joule heating-based platform technology, whereby biosystems are rapidly rewarmed by contact with an electrical conductor that is fed a voltage pulse.
View Article and Find Full Text PDFLiver cryopreservation has the potential to enable indefinite organ banking. This study investigated vitrification-the ice-free cryopreservation of livers in a glass-like state-as a promising alternative to conventional cryopreservation, which uniformly fails due to damage from ice formation or cracking. Our unique "nanowarming" technology, which involves perfusing biospecimens with cryoprotective agents (CPAs) and silica-coated iron oxide nanoparticles (sIONPs) and then, after vitrification, exciting the nanoparticles via radiofrequency waves, enables rewarming of vitrified specimens fast enough to avoid ice formation and uniformly enough to prevent cracking from thermal stresses, thereby addressing the two main failures of conventional cryopreservation.
View Article and Find Full Text PDFDeep-seated tumors of the liver, brain, and other organ systems often recur after initial surgical, chemotherapeutic, radiation, or focal treatments. Repeating these treatments is often invasive and traumatic. We propose an iron oxide nanoparticle (IONP)-enhanced precipitating hydrophobic injectable liquid (PHIL, MicroVention inc.
View Article and Find Full Text PDFTo extend the preservation of donor hearts beyond the current 4-6 h, this paper explores heart cryopreservation by vitrification-cryogenic storage in a glass-like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non-uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, "nanowarming", which uses silica-coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures.
View Article and Find Full Text PDFPancreatic islet transplantation can cure diabetes but requires accessible, high-quality islets in sufficient quantities. Cryopreservation could solve islet supply chain challenges by enabling quality-controlled banking and pooling of donor islets. Unfortunately, cryopreservation has not succeeded in this objective, as it must simultaneously provide high recovery, viability, function and scalability.
View Article and Find Full Text PDFVitrification can dramatically increase the storage of viable biomaterials in the cryogenic state for years. Unfortunately, vitrified systems ≥3 mL like large tissues and organs, cannot currently be rewarmed sufficiently rapidly or uniformly by convective approaches to avoid ice crystallization or cracking failures. A new volumetric rewarming technology entitled "nanowarming" addresses this problem by using radiofrequency excited iron oxide nanoparticles to rewarm vitrified systems rapidly and uniformly.
View Article and Find Full Text PDFLaser heating of gold nanospheres (GNS) is increasingly prevalent in biomedical applications due to tunable optical properties that determine heating efficiency. Although many geometric parameters (i.e.
View Article and Find Full Text PDFCryopreserved tissues are increasingly needed in biomedical applications. However, successful cryopreservation is generally only reported for thin tissues (≤1 mm). This work presents several innovations to reduce cryoprotectant (CPA) toxicity and improve tissue cryopreservation, including 1) improved tissue warming rates through radiofrequency metal form and field optimization and 2) an experimentally verified predictive model to optimize CPA loading and rewarming to reduce toxicity.
View Article and Find Full Text PDFPurpose: Herein, we evaluate the use of MRI as a tool for assessing iron oxide nanoparticle (IONP) distribution within IONP perfused organs and vascularized composite allografts (VCAs) (i.e., hindlimbs) prepared for cryopreservation.
View Article and Find Full Text PDFArteries with 1-mm thick walls can be successfully vitrified by loading cryoprotective agents (CPAs) such as VS55 (8.4 M) or less concentrated DP6 (6 M) and cooling at or beyond their critical cooling rates of 2.5 and 40 °C/min, respectively.
View Article and Find Full Text PDFA two-step hydrothermal process was used to synthesize branched CdS hierarchical nanostructures, which were then sensitized by CdSe via a chemical bath deposition method. CdS nanorods grew on the surface of the existing CdS nanorods to form hierarchical assemblies. After the chemical bath deposition process, core-shell structures of branched CdS nanorods covered by a uniform CdSe overlayer were formed.
View Article and Find Full Text PDF