With the continuous improvement in living standards, people's demand for high-quality meat is increasing. Ningxiang pig has delicious meat of high nutritional value, and is loved by consumers. However, its slow growth and low meat yield seriously restrict its efficient utilization.
View Article and Find Full Text PDFThe development of skeletal muscle is regulated by regulatory factors of genes and non-coding RNAs (ncRNAs). The objective of this study was to understand the transformation of muscle fiber type in the longissimus dorsi muscle of male Ningxiang pigs at four different growth stages (30, 90, 150, and 210 days after birth, n = 3) by histological analysis and whole transcriptome sequencing. Additionally, the study investigated the expression patterns of various RNAs involved in muscle fiber transformation and constructed a regulatory network for competing endogenous RNA (ceRNA) that includes circular RNA (circRNA)/long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA).
View Article and Find Full Text PDFEnhancing meat production and quality is the eternal theme for pig breeding industries. Fat deposition has always been the focus of research in practical production because it is closely linked to pig production efficiency and pork quality. In the current study, multi-omics techniques were performed to explore the modulatory mechanisms of backfat (BF) accumulation at three core developmental stages for Ningxiang pigs.
View Article and Find Full Text PDFMuscle cell growth plays an important role in skeletal muscle development. Circular RNAs (circRNAs) have been proven to be involved in the regulation of skeletal muscle growth and development. In this study, we explored the effect of circTTN on myoblast growth and its possible molecular mechanism.
View Article and Find Full Text PDFThe processes of muscle growth and development, including myoblast proliferation, migration, differentiation, and fusion, are modified by a variety of regulatory factors. plays an important role in atrial development, atrial cardiomyopathy, muscle-fiber size, and muscle development. The structural variation (SV) of was found via the de novo sequencing of Ningxiang pigs, and the existence of SV was verified in the experiments.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis.
View Article and Find Full Text PDFThe growth and development of the muscle are complex, playing an important role in the determination of pork quality. The study of the muscle at the mRNA level is particularly crucial for finding molecular approaches to improving meat quality in pig breeding. The current study utilized transcriptome technology to explore the regulatory mechanisms of muscle growth and intramuscular fat (IMF) deposition in the muscle at three core developmental stages (natal stage on day 1, growing stage on day 60, and finishing stage on day 210) in Ningxiang pigs.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are key regulators involved in the myogenic process in skeletal muscles. miR-708-5p plays an important role in various biochemical and physiological processes, but its function in skeletal myogenesis remain unclear. In this study, we first explored the effects of miR-708-5p on C2C12 proliferation and differentiation by overexpression and interference experiments.
View Article and Find Full Text PDFAdvances in long-read sequencing technology and genome assembly provide an opportunity to improve the pig genome and reveal the full range of structural variations (SVs) between local Chinese and European pigs. To date, little is known about the genomes of some unique Chinese indigenous breeds, such as the Ningxiang pig. Here, we report the sequencing and assembly of a highly contiguous Ningxiang pig genome (NX) via an integration of PacBio single-molecule real-time sequencing, Illumina next-generation sequencing, BioNano optical mapping and Hi-C (chromosome conformation capture) approaches.
View Article and Find Full Text PDF