Extracting photons efficiently from quantum sources, such as atoms, molecules, and quantum dots, is crucial for various nanophotonic systems used in quantum communication, sensing, and computation. To improve the performance of these systems, it is not only necessary to provide an environment that maximizes the number of optical modes, but it is also desirable to guide the extracted light toward specific directions. One way to achieve this goal is to use a large area metasurface that can steer the beam.
View Article and Find Full Text PDFPassive daytime radiative cooling materials could reduce the energy needed for building cooling up to 60% by reflecting sunlight and emitting long-wave infrared (LWIR) radiation into the cold Universe (~3 kelvin). However, developing passive cooling structures that are both practical to manufacture and apply while also displaying long-term environmental stability is challenging. We developed a randomized photonic composite consisting of a microporous glass framework that features selective LWIR emission along with relatively high solar reflectance and aluminum oxide particles that strongly scatter sunlight and prevent densification of the porous structure during manufacturing.
View Article and Find Full Text PDFThe ability to manipulate thermal emission is paramount to the advancement of a wide variety of fields such as thermal management, sensing and thermophotovoltaics. In this work, we propose a microphotonic lens for achieving temperature-switchable self-focused thermal emission. By utilizing the coupling between isotropic localized resonators and the phase change properties of VO, we design a lens that selectively emits focused radiation at a wavelength of 4 µm when operated above the phase transition temperature of VO.
View Article and Find Full Text PDFWe report the design of a tunable, narrowband, thermal metasurface that employs a hybrid resonance generated by coupling a tunable permittivity graphene ribbon to a silicon photonic crystal. The gated graphene ribbon array, proximitized to a high quality factor Si photonic crystal supporting a guided mode resonance, exhibits tunable narrowband absorbance lineshapes (Q > 10,000). Actively tuned Fermi level modulation in graphene with applied gate voltage between high absorptivity and low absorptivity states gives rise to absorbance on/off ratios exceeding 60.
View Article and Find Full Text PDFAdditive Manufacturing (AM) techniques allow the production of complex geometries unattainable through other traditional technologies. This advantage lends itself well to rapidly iterating and improving upon the design of microwave photonic crystals, which are structures with intricate, repeating features. The issue tackled by this work involves compounding a high-permittivity material that can be used to produce 3D microwave photonic structures using polymer extrusion-based AM techniques.
View Article and Find Full Text PDFThe ability to design multi-resonant thermal emitters is essential to the advancement of a wide variety of applications, including thermal management and sensing. These fields would greatly benefit from the development of more efficient tools for predicting the spectral response of coupled, multi-resonator systems. In this work, we propose a semi-analytical prediction tool based on coupled-mode theory.
View Article and Find Full Text PDFA radiative vapor condenser sheds heat in the form of infrared radiation and cools itself to below the ambient air temperature to produce liquid water from vapor. This effect has been known for centuries, and is exploited by some insects to survive in dry deserts. Humans have also been using radiative condensation for dew collection.
View Article and Find Full Text PDFSilicon nanostructure color has achieved unprecedented high printing resolution and larger color gamut than sRGB. The exact color is determined by localized magnetic and electric dipole resonance of nanostructures, which are sensitive to their geometric changes. Usually, the design of specific colors and iterative optimization of geometric parameters are computationally costly, and obtaining millions of different structural colors is challenging.
View Article and Find Full Text PDFMiniaturized spectrometers have significant potential for portable applications such as consumer electronics, health care, and manufacturing. These applications demand low cost and high spectral resolution, and are best enabled by single-shot free-space-coupled spectrometers that also have sufficient spatial resolution. Here, we demonstrate an on-chip spectrometer that can satisfy all of these requirements.
View Article and Find Full Text PDFIn the version of this Letter originally published, Zongfu Yu was mistakenly not noted as being a corresponding author; this has now been corrected in all versions of the Letter.
View Article and Find Full Text PDFThe fundamental light-matter interactions in monolayer transition metal dichalcogenides might be significantly engineered by hybridization with their organic counterparts, enabling intriguing optoelectronic applications. Here, atomically thin organic-inorganic (O-I) heterostructures, comprising monolayer MoSe and mono-/few-layer single-crystal pentacene samples, are fabricated. These heterostructures show type-I band alignments, allowing efficient and layer-dependent exciton pumping across the O-I interfaces.
View Article and Find Full Text PDFSurface antireflection micro and nanostructures, normally formed by conventional reactive ion etching, offer advantages in photovoltaic and optoelectronic applications, including wider spectral wavelength ranges and acceptance angles. One challenge in incorporating these structures into devices is that optimal optical properties do not always translate into electrical performance due to surface damage, which significantly increases surface recombination. Here, we present a simple approach for fabricating antireflection structures, with self-passivated amorphous Ge (α-Ge) surfaces, on single crystalline Ge (c-Ge) surface using the inverse metal-assisted chemical etching technology (I-MacEtch).
View Article and Find Full Text PDFThe solar steam process, akin to the natural water cycle, is considered to be an attractive approach to address water scarcity issues globally. However, water extraction from groundwater, for example, has not been demonstrated using these existing technologies. Additionally, there are major unaddressed challenges in extracting potable water from seawater including salt accumulation and long-term evaporation stability, which warrant further investigation.
View Article and Find Full Text PDFSilicon single-photon avalanche detectors are becoming increasingly significant in research and in practical applications due to their high signal-to-noise ratio, complementary metal oxide semiconductor compatibility, room temperature operation, and cost-effectiveness. However, there is a trade-off in current silicon single-photon avalanche detectors, especially in the near infrared regime. Thick-junction devices have decent photon detection efficiency but poor timing jitter, while thin-junction devices have good timing jitter but poor efficiency.
View Article and Find Full Text PDFMiniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude.
View Article and Find Full Text PDFPassive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.
View Article and Find Full Text PDFWe introduce highly compact resonant-cavity-enhanced magneto-optical switches for metal-dielectric-metal (MDM) plasmonic waveguides. The field profile of the fundamental mode of a MDM waveguide in which the metal is subject to an externally applied static magnetic field is asymmetric. The static magnetic field induced asymmetry, which enhances or reduces the coupling between the waveguide and a side-coupled resonator, and the relatively large induced wave vector modulation are used to design a Fabry-Perot cavity magneto-optical switch, consisting of a MDM waveguide side-coupled to two MDM stub resonators.
View Article and Find Full Text PDF