The electrochemiluminesce (ECL) efficiency of luminous emitter can be enhanced by the means of electrochemiluminesce resonance energy transfer (ECL-RET) with a matched donor. However, generally, the donor and acceptor pairs were separated in different independent nanostructures, experiencing the challenging issues of limited energy transfer efficiency and luminous stability. Herein, we designed novel ECL-RET model within one nanostructure containing the donor of tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)) and the acceptor of CdSe@ZnS quantum dots (QDs) for acting as the ECL emitter (QDs-Ru(dcbpy)), which significantly reduced the energy loss and improved the ECL efficiency of QDs because of the short path of energy transmission.
View Article and Find Full Text PDFThe determination of multiple biomarkers from cancer cells features a considerable step toward early diagnosis of cancers. However, realizing different biomarkers detection with single electrochemiluminescence (ECL) luminophore and regenerating the sensing platform remain a compelling goal. Herein, dual miRNAs-fueled DNA nanogears were designed for an enzyme-free ECL biosensor construction to perform the multiple sensitive detection of the microRNA (miRNA) biomarkers with single luminophore.
View Article and Find Full Text PDF