Improving the transmission and separation efficiency of light carriers is considered an effective method to enhance the catalytic performance of semiconductor photocatalysis. Herein, we report the synthesis and application of g-CN/BiWO heterostructure nanosheets for the photocatalytic coupling of thiols to disulfides under visible light irradiation. The heterojunction exhibits significant photocatalytic performance compared to the bare catalyst, which dramatically enhances the separation and transfer of photogenerated charge carriers due to the remarkable hole-trapping ability of g-CN.
View Article and Find Full Text PDFPhotocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions.
View Article and Find Full Text PDFPhotoexcitation electron donor-acceptor (EDA) complexes provide an effective approach to produce radicals under mild conditions, while the catalytic version of EDA complex photoactivation remains scarce. Herein, we report a visible-light-induced organophotocatalytic pathway for the cyanoalkylation of azauracils using inexpensive and readily available 1,4-diazabicyclo[2.2.
View Article and Find Full Text PDFLead-free perovskite microcrystals (MCs) have been regarded as promising potential photocatalysts, owing to their high molar extinction coefficient, low economic cost, adjustable light absorption range, and ample surface-active sites. Herein, C-3 thio/selenocyanation of indoles is demonstrated in high selectivity and yield by using lead-free double perovskite CsAgBiBr MCs under visible light irradiation. Moreover, the photocatalyst can be recycled at least 5 times without a significant decrease in catalytic activity.
View Article and Find Full Text PDFPhotochem Photobiol Sci
April 2024
Manufacturing high-performance and reusable materials from radioactive uranium-containing wastewater remains a significant challenge. Herein, a supramolecular self-assembly strategy was proposed, using melamine and cyanuric acid as precursors and using intermolecular hydrogen bond force to form carbon nitride (CN-D) in different solvents through a single thermal polymerization strategy. Supramolecular self-assembly method is a promising strategy to synthesize a novel carbon nitride with molecular regulatory properties.
View Article and Find Full Text PDFVisible-light-induced EDA complex-promoted ring-opening of cycloketone oxime esters to synthesise various cyanoalkylated products with -methacryloyl benzamides was developed. Various radical receptors were compatible with the current reaction system to furnish diverse heterocyclic compounds. Mechanistic analysis shows that the formation of an EDA complex was crucial to the photocatalytic strategy.
View Article and Find Full Text PDFAllyl sulfones are important sulfur-containing compounds that have widespread applications in organic synthesis, medicinal chemistry and materials science. Herein, nickel-catalysed dehydrosulfonylation of unactivated allyl alcohols with aryl sulfonyl hydrazides without additional active agents under mild conditions was developed. A variety of functional allyl sulfones could be efficiently synthesized in the presence of air-stable Ni(acac) as the catalyst and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) as the ligand.
View Article and Find Full Text PDFThe chemical transformation of waste polymers into value-added chemicals is of significance for circular economy and sustainable development. Herein, we report upcycling poly(succinates) (PSS) with amines into N-substituted succinimides over succinimide anion-based ionic liquids (ILs, e.g, 1,8-diazabicyclo[5.
View Article and Find Full Text PDFA visible-light-induced decarboxylative cascade reaction of acryloylbenzamides with alkyl -hydroxyphthalimide (NHP) esters for the synthesis of various 4-alkyl isoquinolinediones mediated by triphenylphosphine (PPh) and sodium iodide (NaI) was developed. This operationally simple protocol proceeded the photoactivation of electron donor-acceptor (EDA) complexes between -hydroxyphthalimide esters and NaI/PPh, resulting in multiple carbon-carbon bond formations without the use of precious metal complexes or synthetically elaborate organic dyes, which provided an alternative practical approach to synthesize diverse isoquinoline-1,3(2,4)-dione derivatives.
View Article and Find Full Text PDFThis paper reports a novel method for the visible-light-mediated synthesis of quinazolinones from the reaction of benzyl bromides with 2-aminobenzamides. The reaction proceeded efficiently at room temperature upon irradiation with an 18 W blue light-emitting diode in air without photocatalysts or additives. By varying the solvent type, substrate molar ratio, and reaction time, the optimal reaction conditions, including the use of methanol solvent, room temperature, and reaction time of 28 h, were identified.
View Article and Find Full Text PDFOrganophotocatalytic cascade cross-dehydrogenative-coupling/cyclization reaction of -hydroxyarylenaminones with α-amino acid derivatives for the construction of α-chromone substituted α-amino acid derivatives was developed. Various -arylglycine esters, amides and dipeptides underwent the cascade cyclization reaction well with -hydroxyarylenaminones to afford the corresponding 3-aminoalkyl chromones in good to excellent yields. This approach consists of visible-light-promoted oxidation of α-amino acid derivatives, the Mannich reaction, and intramolecular nucleophilic cyclization under acidic conditions, and features a wide reaction scope, a simple operation and mild reaction conditions, which may have the potential to be used for the synthesis of bioactive molecules.
View Article and Find Full Text PDFA redox-neutral nickel-catalysed sulfonylation for arylsulfone synthesis was developed. (Hetero)aryl boronic acids reacted with potassium metabisulfite (K S O ) and readily available 2-chlorothiazoles in the presence of air-stable Ni(OTf) and 4,4-di-tert-butyl bipyridine (dtbpy) as a commercially available ligand to produce the corresponding 2-sulfonylthiazoles in moderate to excellent yields. This practical protocol tolerates a wide range of substrates including boronic acids and 2-chloro(benzo)thiazoles without additional bases, allowing the direct synthesis of functional arylsulfones.
View Article and Find Full Text PDFConversion of alcohols into corresponding carbonyl compounds through an oxidation reaction with high conversion and selectivity simultaneously under mild conditions still remains a great challenge. Herein, a cost-effective and highly efficient photocatalytic protocol for selective oxidation of alcohols was developed using CsPbBr perovskite as a heterogeneous photocatalyst, which afforded aldehydes/ketones exclusively with a yield of 99% at ambient temperature under an air atmosphere. Moreover, the photocatalyst can be recycled at least 5 times without a significant decrease in catalytic activity.
View Article and Find Full Text PDFHerein, we reported a facile and readily accessible visible-light-driven photocatalytic protocol to induce oxidative cleavage of C═C bonds to corresponding carbonyls using CsPbBr nanocrystals as photocatalysts. This catalytic system was applicable to a wide range of terminal and internal alkenes. Detailed mechanism studies indicated that a single-electron transfer (SET) process was involved in this transformation, wherein the superoxide radical (O) and photogenerated holes played crucial roles.
View Article and Find Full Text PDFThis study reports a novel method for the synthesis of fused quinazolinones by visible-light-induced cyclization of 2-aminobenzaldehydes and tetrahydroisoquinolines. The reaction is easily carried out by irradiation with a blue LED in the presence of 9-fluorenone and air. A broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions.
View Article and Find Full Text PDFAn efficient nickel-catalyzed cross-coupling for the synthesis of 2-sulfonylthiazoles from readily available 2-chlorobenzothiazoles and sodium sulfinates has been developed. A variety of 2-chlorobenzothiazoles and sulfinates having a diverse range of substitution patterns can undergo the coupling process successfully at room temperature. Avoiding the use of precious catalysts and sensitive ligands, moderate to excellent yields of various 2-sulfonylthiazoles were observed.
View Article and Find Full Text PDFBenzyl phenyl sulfide is a kind of important chemicals with wide usage, which is mainly prepared through a nucleophilic reaction of thiophenol with benzyl chlorides or benzyl alcohols, suffering from inherent drawbacks, such as low efficiency, requirements for equivalent acid or base catalysts and formation of harmful byproducts and waste. Herein, we report a green route to access various benzyl phenyl sulfide derivatives in good to excellent yields under mild conditions via the reaction of thioanisoles with benzyl alcohols over ionic liquid 1-propylsulfonate-3-methylimidazolium trifluoromethanesulfonate ([SO HPrMIm][OTf]). Mechanism investigation indicates that the synergic effect of cation and anion of [SO HPrMIm][OTf] activates thioanisoles and benzyl alcohols via hydrogen bonding, thus catalyzes the dehydration of benzyl alcohol to dibenzyl ether and the subsequent metathesis reaction between dibenzyl ether and benzyl phenyl sulfide, finally generating benzyl phenyl sulfide derivatives.
View Article and Find Full Text PDFPhotochem Photobiol Sci
March 2023
A fast and highly efficient method for the synthesis of functionalized quinazolinones by combining enzymatic catalysis and photocatalysis is reported. The α-Chymotrypsin catalyzed the cyclization of aldehyde and 2-aminobenzamide, which was subsequently followed by White LED-induced oxidation of 2-phenyl-2, 3-dihydroquinazolin-4(1H)-one to obtain quinazolinone. The reaction process was highly efficient with a reaction yield of 99% in just 2 h, and a wide range of quinazolinones could be synthesized.
View Article and Find Full Text PDFHerein, we reported a practical and efficient strategy combining photoredox and enzyme catalysis for the construction of 3-aminoalkyl chromones from -hydroxyaryl enaminones and -arylglycine esters. A variety of 3-aminoalkyl chromones were synthesized with good yields under mild conditions in one pot. This synthetic protocol consists of sequential enzymatic hydrolysis and photoredox decarboxylation of -arylglycine esters, oxidation of aminoalkyl radicals, Mannich reaction, and intramolecular nucleophilic cyclization, which affords a convenient pathway for the preparation of various 3-substituted chromones.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2023
As a clean energy source, nuclear energy can gradually replace traditional fossil energy sources, and is an important means to achieve the "double carbon goal". Uranium-containing wastewater is inevitable in the development of nuclear energy. The composites MIL/CNx of MOF material MIL-100(Fe) and carbon nitride (CN) were obtained by a simple solvo-thermal method using iron nitrate, homophthalic acid and CN.
View Article and Find Full Text PDFHerein, we reported a photocatalyst-free, facile and eco-friendly method for conducting dehydrogenation of alcohols to corresponding aldehydes or ketones with high selectivity under mild conditions. The methodology exhibited outstanding tolerance with electron-donating and electron-withdrawing groups and afforded series of aldehydes or ketones in considerable yields. Furthermore, the plausible mechanism was investigated by control experiments and DFT calculations.
View Article and Find Full Text PDFAn efficient and powerful copper-assisted method for the effective conversion of a broad range of hydroxypyridines and sodium sulfinates into their corresponding pyridinyl tosylates was developed. Key features of this base- and ligand-free protocol include using the cheap and readily available CuBr as a medium and the use of sodium sulfinates as formal sulfonylation reagents. A variety of functional pyridinyl tosylates could be formed with good yields, which can easily be converted into C-C and C-N bond-containing compounds.
View Article and Find Full Text PDFAn efficient and concise method for the synthesis of diverse substituted sulfones was developed with high selectivity. Using -PrOH as the solvent, diaryl sulfones are formed even on a gram scale metal-free coupling from sulfonyl hydrazines with symmetrical or unsymmetrical diaryliodonium salts.
View Article and Find Full Text PDFQuinazoline compounds demonstrate a variety of physiological and pharmacological activities. However, the most common syntheses require large quantities of oxidants, high temperature, and other extreme conditions. In this study, quinazoline compounds were synthesized from the condensation of α-keto acid and 2-aminobenzylamine and then decarboxylation under blue LED irradiation at room temperature without transition metal catalysts or additives.
View Article and Find Full Text PDF