Publications by authors named "Zong-Yuan Xiao"

Article Synopsis
  • The study focuses on improving the performance of photoresponsive devices using photochromic molecules by addressing issues caused by strong coupling between traditional electrodes and molecules.
  • A new approach was developed using transition metal dichalcogenides (TMDCs) to create self-assembled monolayer (SAM) junctions with thiol azobenzene, leading to significantly improved reversible photoswitching behavior compared to gold electrodes.
  • Density functional theory calculations revealed that the coupling strength between the thiol azobenzene and the TMDCs electrode was weaker, contributing to enhanced reversibility of the photoswitches.
View Article and Find Full Text PDF

Quantum-tunneling-based nanoelectronics has the potential for the miniaturization of electronics toward the sub-5 nm scale. However, the nature of phase-coherent quantum tunneling leads to the rapid decays of the electrical conductance with tunneling transport distance, especially in organic molecule-based nanodevices. In this work, we investigated the conductance of the single-cluster junctions of a series of atomically well-defined silver nanoclusters, with varying sizes from 0.

View Article and Find Full Text PDF

We apply direct ink writing for the three-dimensional (3D) printing of polyaniline/reduced graphene oxide (PANI/RGO) composites with PANI/graphene oxide (PANI/GO) gel as printable inks. The PANI/GO gel inks for 3D printing are prepared via self-assembly of PANI and GO in a blend solvent of N-methyl-2-pyrrolidinone and water, and offer both shaping capability, self-sustainability, and electrical conductivity after reduction of GO. PANI/RGO interdigital electrodes are fabricated with 3D printing, and based on these electrodes, a planar solid-state supercapacitor is constructed, which exhibits high performance with an areal specific capacitance of 1329 mF cm.

View Article and Find Full Text PDF

To guide the choice of future synthetic targets for single-molecule electronics, qualitative design rules are needed, which describe the effect of modifying chemical structure. Here the effect of heteroatom substitution on destructive quantum interference (QI) in single-molecule junctions is, for the first time experimentally addressed by investigating the conductance change when a "parent" meta-phenylene ethylene-type oligomer (m-OPE) is modified to yield a "daughter" by inserting one nitrogen atom into the m-OPE core. We find that if the substituted nitrogen is in a meta position relative to both acetylene linkers, the daughter conductance remains as low as the parent.

View Article and Find Full Text PDF

Nineteen novel indene-substituted oxime ether strobilurins, which used an indene group to stabilize the ( E)-styryl group in SYP-Z071 (an unsaturated oxime strobilurin fungicide under development by the Shenyang Research Institute of Chemical Industry), were designed and synthesized. The biological assay results showed that all compounds possessed good or excellent fungicidal activities. It was found that most of the compounds showed higher fungicidal activities against Pyricularia oryzae, Phytophthora infestans, Erysiphe graminis, and Colletotrichum lagenarium than SYP-Z071 at the tested concentration.

View Article and Find Full Text PDF