Diagnostics (Basel)
November 2024
Background/objectives: Artificial Intelligence (AI) in healthcare employs advanced algorithms to analyze complex and large-scale datasets, mimicking aspects of human cognition. By automating decision-making processes based on predefined thresholds, AI enhances the accuracy and reliability of healthcare data analysis, reducing the need for human intervention. Schizophrenia (SZ), a chronic mental health disorder affecting millions globally, is characterized by symptoms such as auditory hallucinations, paranoia, and disruptions in thought, behavior, and perception.
View Article and Find Full Text PDFThe performance of ultra-high-performance concrete (UHPC) allows for the design and creation of thinner elements with superior overall durability. The compressive strength of UHPC is a value that can be reached after a certain period of time through a series of tests and cures. However, this value can be estimated by machine-learning methods.
View Article and Find Full Text PDFLung cancer is one of the leading causes of cancer-related deaths worldwide. To reduce the mortality rate, early detection and proper treatment should be ensured. Computer-aided diagnosis methods analyze different modalities of medical images to increase diagnostic precision.
View Article and Find Full Text PDFBasalt fibers are a type of reinforcing fiber that can be added to concrete to improve its strength, durability, resistance to cracking, and overall performance. The addition of basalt fibers with high tensile strength has a particularly favorable impact on the splitting tensile strength of concrete. The current study presents a data set of experimental results of splitting tests curated from the literature.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Metaheuristic optimization techniques are widely applied in the optimal design of structural members. This paper presents the application of the harmony search algorithm to the optimal dimensioning of reinforced concrete circular columns. For the objective of optimization, the total cost of steel and concrete associated with the construction process were selected.
View Article and Find Full Text PDFFiber-reinforced polymer (FRP) rebars are increasingly being used as an alternative to steel rebars in reinforced concrete (RC) members due to their excellent corrosion resistance capability and enhanced mechanical properties. Extensive research works have been performed in the last two decades to develop predictive models, codes, and guidelines to estimate the axial load-carrying capacity of FRP-RC columns. This study utilizes the power of artificial intelligence and develops an alternative approach to predict the axial capacity of FRP-RC columns more accurately using data-driven machine learning (ML) algorithms.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
December 2021
Under the present circumstances, when we are still under the threat of different strains of coronavirus, and since the most widely used method for COVID-19 detection, RT-PCR is a tedious and time-consuming manual procedure with poor precision, the application of Artificial Intelligence (AI) and Computer-Aided Diagnosis (CAD) is inevitable. Though, some vaccines have now been authorized worldwide, it will take huge time to reach everyone, especially in developing countries. In this work, we have analyzed Chest X-ray (CXR) images for the detection of the coronavirus.
View Article and Find Full Text PDFPneumonia is a respiratory infection caused by bacteria or viruses; it affects many individuals, especially in developing and underdeveloped nations, where high levels of pollution, unhygienic living conditions, and overcrowding are relatively common, together with inadequate medical infrastructure. Pneumonia causes pleural effusion, a condition in which fluids fill the lung, causing respiratory difficulty. Early diagnosis of pneumonia is crucial to ensure curative treatment and increase survival rates.
View Article and Find Full Text PDFDiagnostics (Basel)
August 2021
Depression is one of the leading causes of disability worldwide. Given the socioeconomic burden of depression, appropriate depression screening for community dwellers is necessary. We used data from the 2014 and 2016 Korea National Health and Nutrition Examination Surveys.
View Article and Find Full Text PDFHandwritten keyword spotting (KWS) is of great interest to the document image research community. In this work, we propose a learning-free keyword spotting method following query by example (QBE) setting for handwritten documents. It consists of four key processes: pre-processing, vertical zone division, feature extraction, and feature matching.
View Article and Find Full Text PDFCOVID-19 is a disease caused by the SARS-CoV-2 virus. The COVID-19 virus spreads when a person comes into contact with an affected individual. This is mainly through drops of saliva or nasal discharge.
View Article and Find Full Text PDFThe COVID-19 virus is spreading across the world very rapidly. The World Health Organization (WHO) declared it a global pandemic on 11 March 2020. Early detection of this virus is necessary because of the unavailability of any specific drug.
View Article and Find Full Text PDFDepression is a mental illness that causes significant disturbances in daily life. Depression is commonly associated with low mood, severe health problems, and substantial socioeconomic burden; hence, it is necessary to be able to detect depression earlier. We utilized the medical check-up cohort database of the National Health Insurance Sharing Service in Korea.
View Article and Find Full Text PDFNord J Psychiatry
October 2020
Background: Early detection of oppositional defiant behavior is warranted for timely intervention in children at risk. This study aimed to build a predictive model of persistent oppositional defiant behavior based on a machine learning algorithm.
Methods: With nationwide cohort data collected from 2012 to 2017, a tree-based ensemble model, random forest, was exploited to build a predictive model for persistent oppositional defiant behavior.
In this study, we propose a method to find an optimal combination of hyperparameters to improve the accuracy of respiration pattern recognition in a 1D (Dimensional) convolutional neural network (CNN). The proposed method is designed to integrate with a 1D CNN using the harmony search algorithm. In an experiment, we used the depth of the convolutional layer of the 1D CNN, the number and size of kernels in each layer, and the number of neurons in the dense layer as hyperparameters for optimization.
View Article and Find Full Text PDFOne of the major goals in the process of designing structural components is to achieve the highest possible buckling load of the structural component while keeping the cost and weight at a minimum. This paper illustrates the application of the harmony search algorithm to the buckling load maximisation of dispersed laminated composite plates with rectangular geometry. The ply thicknesses and fiber orientation angles of the plies were chosen as the design variables.
View Article and Find Full Text PDFPneumonia causes the death of around 700,000 children every year and affects 7% of the global population. Chest X-rays are primarily used for the diagnosis of this disease. However, even for a trained radiologist, it is a challenging task to examine chest X-rays.
View Article and Find Full Text PDFNowadays, an infectious disease outbreak is considered one of the most destructive effects in the sustainable development process. The outbreak of new coronavirus (COVID-19) as an infectious disease showed that it has undesirable social, environmental, and economic impacts, and leads to serious challenges and threats. Additionally, investigating the prioritization parameters is of vital importance to reducing the negative impacts of this global crisis.
View Article and Find Full Text PDFBecause depression has high prevalence and cause enduring disability, it is important to predict onset of depression among community dwelling adults. In this study, we aimed to build a machine learning-based predictive model for future onset of depression. We used nationwide survey data to construct training and hold-out test set.
View Article and Find Full Text PDF