Publications by authors named "Zong-Quan Zhou"

Photonic integrated quantum memories are essential for the construction of scalable quantum networks. Spin-wave quantum storage, which can support on-demand retrieval with a long lifetime, is indispensable for practical applications, but has never been demonstrated in an integrated solid-state device. Here, we demonstrate spin-wave quantum storage based on a laser-written waveguide fabricated in a Eu:YSiO crystal, using both the atomic frequency comb and noiseless photon-echo protocols.

View Article and Find Full Text PDF
Article Synopsis
  • * This study successfully demonstrates nonlocal photonic quantum gates over a distance of 7.0 km using stationary qubits and flying qubits, surpassing previous limitations of entanglement between nearby nodes.
  • * The implementation of quantum algorithms like the Deutsch-Jozsa and quantum phase estimation showcases quantum parallelism, marking significant progress towards large-scale distributed quantum networks using existing fiber technology.
View Article and Find Full Text PDF
Article Synopsis
  • Photonic quantum computation is a new technology that's better than regular computers for certain tasks and is getting closer to being used in real life.
  • Scientists have designed a special processor that can do a lot of different programs efficiently and with great precision.
  • They tested this technology by running two complex programs to explore exciting topics in quantum physics, showing that their design is really good for future uses.
View Article and Find Full Text PDF

Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics of microwave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V[Formula: see text]) spin ensemble in hBN.

View Article and Find Full Text PDF

Photonic polarization qubits are widely used in quantum computation and quantum communication due to the robustness in transmission and the easy qubit manipulation. An integrated quantum memory for polarization qubits is a useful building block for large-scale integrated quantum networks. However, on-demand storing polarization qubits in an integrated quantum memory is a long-standing challenge due to the anisotropic absorption of solids and the polarization-dependent features of microstructures.

View Article and Find Full Text PDF
Article Synopsis
  • Photon echo is a technique used to control electromagnetic fields, but spontaneous emission noise from strong rephasing pulses limits its effectiveness in quantum applications.
  • The authors propose a new noiseless photon-echo protocol utilizing a four-level atomic system, implemented in a Eu:YSiO crystal, which acts as an optical quantum memory.
  • This method achieves a storage fidelity of 0.952 ± 0.018 for time-bin qubits, outperforming classical strategies, and offers advantages like spin-wave storage and simplicity, with potential for broader application across other systems.
View Article and Find Full Text PDF

Owing to the inevitable loss in communication channels, the distance of entanglement distribution is limited to approximately 100 kilometres on the ground. Quantum repeaters can circumvent this problem by using quantum memory and entanglement swapping. As the elementary link of a quantum repeater, the heralded distribution of two-party entanglement between two remote nodes has only been realized with built-in-type quantum memories.

View Article and Find Full Text PDF

In optical metrological protocols to measure physical quantities, it is, in principle, always beneficial to increase photon number n to improve measurement precision. However, practical constraints prevent the arbitrary increase of n due to the imperfections of a practical detector, especially when the detector response is dominated by the saturation effect. In this work, we show that a modified weak measurement protocol, namely, biased weak measurement significantly improves the precision of optical metrology in the presence of saturation effect.

View Article and Find Full Text PDF
Article Synopsis
  • - Photon loss in optical fibers limits the distribution of quantum information over long distances, necessitating innovative solutions like quantum repeaters, though they face complexity and distance constraints.
  • - Alternative methods, such as using transportable quantum memories and satellites equipped with these memories, aim to enable global quantum communication, but current optical memories only store information for about 1 minute.
  • - Researchers have successfully demonstrated a new method using a magnetic field and dynamical decoupling to achieve light storage in an atomic frequency comb memory for over 1 hour, paving the way for advancements in long-term quantum communication technology.
View Article and Find Full Text PDF

Photonic quantum memory is the core element in quantum information processing (QIP). For the scalable and convenient practical applications, great efforts have been devoted to the integrated quantum memory based on various waveguides fabricated in solids. However, on-demand storage of qubits, which is an essential requirement for QIP, is still challenging to be implemented using such integrated quantum memory.

View Article and Find Full Text PDF

Stable quantum memories that capable of storing quantum information for long time scales are an essential building block for an array of potential applications. The long memory time are usually achieved via dynamical decoupling technique involving decoupling of the memory states from its local environment. However, because this process is strongly limited by the errors in the pulses, an noise-protected scheme remains challenging in the field of quantum memories.

View Article and Find Full Text PDF

Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins in silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration sixfold through optimization of implantation conditions.

View Article and Find Full Text PDF

Reliable information transmission between spatially separated nodes is fundamental to a network architecture for scalable quantum technology. Spin qubit in semiconductor quantum dots is a promising candidate for quantum information processing. However, there remains a challenge to design a practical path from the existing experiments to scalable quantum processor.

View Article and Find Full Text PDF

A memory-based quantum repeater architecture provides a solution to distribute quantum information to an arbitrary long distance. Practical quantum repeaters are likely to be built in optical-fiber networks which take advantage of the low-loss transmission between quantum memory nodes. Most quantum memory platforms have characteristic atomic transitions away from the telecommunication band.

View Article and Find Full Text PDF

The hybrid system of electron spins and resonator photons is an attractive architecture for quantum computing owing to the long coherence times of spins and the promise of long-distance coupling between arbitrary pairs of qubits via photons. For the device to serve as a building block for a quantum processer, it is also necessary to readout the spin qubit state. Here we analyze in detail the measurement process of an electron spin singlet-triplet qubit in quantum dots using a coupled superconducting resonator.

View Article and Find Full Text PDF

The faithful storage and coherent manipulation of quantum states with matter-systems would enable the realization of large-scale quantum networks based on quantum repeaters. To achieve useful communication rates, highly multimode quantum memories are required to construct a multiplexed quantum repeater. Here, we present a demonstration of on-demand storage of orbital-angular-momentum states with weak coherent pulses at the single-photon-level in a rare-earth-ion-doped crystal.

View Article and Find Full Text PDF

It has been suggested that both quantum superpositions and nonlinear interactions are important resources for quantum metrology. However, to date the different roles that these two resources play in the precision enhancement are not well understood. Here, we experimentally demonstrate a Heisenberg-scaling metrology to measure the parameter governing the nonlinear coupling between two different optical modes.

View Article and Find Full Text PDF

Contextuality, the impossibility of assigning context-independent measurement outcomes, is a critical resource for quantum computation and communication. No-signaling between successive measurements is an essential requirement that should be accomplished in any test of quantum contextuality and that is difficult to achieve in practice. Here, we introduce an optimal quantum state-independent contextuality inequality in which the deviation from the classical bound is maximal.

View Article and Find Full Text PDF

The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology.

View Article and Find Full Text PDF

The physical impact and the testability of the Kochen-Specker (KS) theorem is debated because of the fact that perfect compatibility in a single quantum system cannot be achieved in practical experiments with finite precision. Here, we follow the proposal of A. Cabello and M.

View Article and Find Full Text PDF

Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution.

View Article and Find Full Text PDF