Endothelial progenitor cells (EPCs) play an important role in vascular repair and re-endothelialization after vessel injury. EPCs in blood vessels are subjected to cyclic stretch (CS) due to the pulsatile pressure, but the role of CS in metabolic reprogramming of EPC, particularly its vascular homing and repair, is largely unknown. In the current study, physiological CS applied to EPCs at a magnitude of 10% and a frequency of 1 Hz significantly promoted their vascular adhesion and endothelial differentiation.
View Article and Find Full Text PDFNeointimal hyperplasia caused by dedifferentiation and proliferation of venous smooth muscle cells (SMCs) is the major challenge for restenosis after coronary artery bypass graft. Herein, we investigated the role of Lamtor1 in neointimal formation and the regulatory mechanism of non-coding RNA underlying this process. Using a "cuff" model, veins were grafted into arterial system and Lamtor1 expression which was correlated with the activation of mTORC1 signaling and dedifferentiation of SMCs, were measured by Western blot.
View Article and Find Full Text PDFPhenotypic switch of vascular smooth muscle cells (VSMCs) is important in vascular remodeling which causes hyperplasia and restenosis after intimal injury. Platelets are activated at injured intima and secrete platelet-derived microvesicles (PMVs). Herein, we demonstrated the role of PMVs in VSMC phenotypic switch and the potential underlying mechanisms.
View Article and Find Full Text PDFVascular endothelial cells (ECs) sense and respond to hemodynamic forces such as pulsatile shear stress (PS) and oscillatory shear stress (OS). Among the metabolic pathways, glycolysis is differentially regulated by atheroprone OS and atheroprotective PS. Studying the molecular mechanisms by which PS suppresses glycolytic flux at the epigenetic, transcriptomic, and kinomic levels, we have demonstrated that glucokinase regulatory protein (GCKR) was markedly induced by PS in vitro and in vivo, although PS down-regulates other glycolysis enzymes such as hexokinase (HK1).
View Article and Find Full Text PDFThe arterial mechanical microenvironment, including stiffness, is a crucial pathophysiological feature of vascular remodeling, such as neointimal hyperplasia after carotid endarterectomy and balloon dilatation surgeries. In this study, we examined changes in neointimal stiffness in a Sprague-Dawley rat carotid artery intimal injury model and revealed that extracellular matrix (ECM) secretion and vascular stiffness were increased. Once the endothelial layer is damaged , activated platelets adhere to the intima and may secrete platelet-derived extracellular vesicles (pEVs) and communicate with vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) play a vital role in endothelial repair following vascular injury by maintaining the integrity of endothelium. As EPCs home to endothelial injury sites, they may communicate with exposed vascular smooth muscle cells (VSMCs), which are subjected to cyclic stretch generated by blood flow. In this study, the synergistic effect of cyclic stretch and communication with neighboring VSMCs on EPC function during vascular repair was investigated.
View Article and Find Full Text PDFEndothelial microparticles (EMPs) are involved in various cardiovascular pathologies and play remarkable roles in communication between endothelial cells (ECs), which are constantly exposed to mechanical cyclic stretch (CS) following blood pressure. However, the roles of EMPs induced by CS in EC homeostasis are still unclear. Both fluorescence resonance energy transfer (FRET) and western blotting revealed the activation of Src in ECs was significantly increased by 5% CS-induced EMPs.
View Article and Find Full Text PDFIntimal injury is an early stage of several cardiovascular diseases. Endothelial progenitor cells (EPCs) play a significant role in endothelial repair following vascular injury. Once the intima is damaged, EPCs are mobilized from the bone marrow to the injury site.
View Article and Find Full Text PDFAbnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are the pathological basis of hyperplasia during vein graft disease. It remains unknown if circular RNAs (circRNAs) are involved in vein graft disease. In the present study, a rat vein graft model was constructed by the "cuff" technique, and whole transcriptome deep sequencing was applied to identify differential circRNAs in the grafted vein compared to the control.
View Article and Find Full Text PDFPhysiological cyclic stretch (CS), caused by artery deformation following blood pressure, plays important roles in the homeostasis of endothelial cells (ECs). Here, we detected the effect of physiological CS on endothelial microvesicles (EMVs) and their roles in leukocyte recruitment to ECs, which is a crucial event in EC inflammation. The results showed compared with the static treatment, pretreatment of 5%-CS-derived EMVs with ECs significantly decreased the adherence level of leukocytes.
View Article and Find Full Text PDFMechanical stimuli play an important role in vein graft restenosis and the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are pathological processes contributing to this disorder. Here, based on previous high-throughput sequencing data from vein grafts, miR-29a-3p and its target, the role of Ten-eleven translocation methylcytosinedioxygenase 1 (TET1) in phenotypic transformation of VSMCs induced by mechanical stretch was investigated. Vein grafts were generated by using the "cuff" technique in rats.
View Article and Find Full Text PDFDendritic cells (DCs) have crucial roles in immune-related diseases. However, it is difficult to explore DCs because of their rareness and heterogeneity. Although previous studies had been performed to detect the phenotypic characteristics of DC populations, the functional diversity has been ignored.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) are vital to the recovery of endothelial function and maintenance of vascular homeostasis. EPCs mobilize to sites of vessel injury and differentiate into mature endothelial cells (ECs). Locally mobilized EPCs are exposed to cyclic stretch caused by blood flow, which is important for EPC differentiation.
View Article and Find Full Text PDFVascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by the blood flow. Numerous researches revealed that during various cardiovascular diseases such as atherosclerosis, hypertension, and vein graft, abnormal (pathological) mechanical forces play crucial roles in the dysfunction of ECs and VSMCs, which is the fundamental process during both vascular homeostasis and remodeling. Hemodynamic forces trigger several membrane molecules and structures, such as integrin, ion channel, primary cilia, etc.
View Article and Find Full Text PDFBlood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4weeks.
View Article and Find Full Text PDFYi Yong Sheng Wu Li Xue
August 2016
Blood vessels are often subjected to axial torsion (or twist) due to body movement or surgery. However, there are few studies on blood vessel under twist. This review first summarizes the clinical observation on the twist of blood vessels and then presents what we know about the mechanical behaviors of blood vessel under twist, including the constitutive models.
View Article and Find Full Text PDFBackground: Long noncoding RNAs (lncRNAs) are being discovered in multiple diseases at a rapid pace. However, the contribution of lncRNAs to hypertension remains largely unknown. In hypertension, the vascular walls are exposed to abnormal mechanical cyclic strain, which leads to vascular remodelling.
View Article and Find Full Text PDFAims: Mechanical factors play significant roles in neointimal hyperplasia after vein grafting, but the mechanisms are not fully understood. Here, we investigated the roles of microRNA-33 (miR-33) in neointimal hyperplasia induced by arterial mechanical stretch after vein grafting.
Methods And Results: Grafted veins were generated by the 'cuff' technique.
Abnormal proliferation of endothelial cells (ECs) is important in vascular remodeling during hypertension, but the mechanisms are still unclear. In hypertensive rats caused by abdominal aortic coarctation, the expression of G-protein-coupled receptor kinase 6 (GRK6) in ECs at common carotid artery was repressed in vivo, and EC proliferation was increased. 15% cyclic stretch in vitro, which mimics the pathologically increased stretch in hypertension, repressed EC GRK6 expression via paracrine control by vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFCyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms.
View Article and Find Full Text PDFBackground/aims: Physiological mechanical stretch in vivo helps to maintain the quiescent contractile differentiation of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are still unclear. Here, we investigated the effects of SIRT1 in VSMC differentiation in response to mechanical cyclic stretch.
Methods And Results: Rat VSMCs were subjected to 10%-1.
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in pathophysiological remodeling of arteries during hypertension in pregnancy. However, the mechanisms involved in this process remain unclear. We hypothesized that Neuropeptide Y (NPY), which is a potent mitogenic peptide, participates in modulating proliferation and migration of VSMCs during hypertension in pregnancy.
View Article and Find Full Text PDFThe dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs.
View Article and Find Full Text PDF