We investigate the ultrafast relaxation dynamics of hot Dirac fermionic quasiparticles in multilayer epitaxial graphene using ultrafast optical differential transmission spectroscopy. We observe differential transmission spectra which are well described by interband transitions with no electron-hole interaction. Following the initial thermalization and emission of high-energy phonons, the electron cooling is determined by electron-acoustic phonon scattering, found to occur on the time scale of 1 ps for highly doped layers, and 4-11 ps in undoped layers.
View Article and Find Full Text PDFQuantum cascade lasers are semiconductor devices based on the interplay of perpendicular transport through the heterostructure and the intracavity lasing field. We employ femtosecond time-resolved pump-probe measurements to investigate the nature of the transport through the laser structure via the dynamics of the gain. The gain recovery is determined by the time-dependent transport of electrons through both the active regions and the superlattice regions connecting them.
View Article and Find Full Text PDF