Publications by authors named "Zong-Kuan Guo"

The space-based laser interferometers, LISA, Taiji and TianQin, are targeting to observe milliHz gravitational waves (GWs) in the 2030s. The joint observations from multiple space-based detectors yield significant advantages. In this work, we recap the studies and investigations for the joint space-based GW detector networks to highlight: 1) the high precision of sky localization for the massive binary black hole (BBH) coalescences and the GW sirens in the cosmological implication, 2) the effectiveness to test the parity violation in the stochastic GW background observations, 3) the efficiency of subtracting galactic foreground, 4) the improvement in stellar-mass BBH observations.

View Article and Find Full Text PDF

The randomness of the quantum tunneling process induces superhorizon curvature perturbations during cosmological first-order phase transitions. We for the first time utilize curvature perturbations to constrain the phase transition parameters, and find that the observations of the cosmic microwave background spectrum distortion and the ultracompact minihalo abundance can give strict constraints on the phase transitions below 100 GeV, especially for the low-scale phase transitions and some electroweak phase transitions. The current constraints on the phase transition parameters are largely extended by the results of this work, therefore provide an novel approach to probe related new physics.

View Article and Find Full Text PDF

The Hubble parameter is one of the central parameters in modern cosmology, and describes the present expansion rate of the universe. The values of the parameter inferred from late-time observations are systematically higher than those inferred from early-time measurements by about [Formula: see text]. To reach a robust conclusion, independent probes with accuracy at percent levels are crucial.

View Article and Find Full Text PDF

We investigate the stochastic gravitational wave background (SGWB) from cosmic domain walls (DWs) caused by quantum fluctuations of a light scalar field ϕ during inflation. Large-scale perturbations of ϕ lead to large-scale perturbations of DW energy density and anisotropies in the SGWB. We find that the angular power spectrum of this SGWB is scale invariant and at least of the order of 10^{-2}, which is a distinctive feature of observational interest.

View Article and Find Full Text PDF

We explore a potential LISA-Taiji network to fast and accurately localize the coalescing massive black hole binaries. For an equal-mass binary located at redshift of 1 with a total intrinsic mass of 10 , the LISA-Taiji network may achieve almost four orders of magnitude improvement on the source localization region compared to an individual detector. The precision measurement of sky location from the gravitational-wave signal may completely identify the host galaxy with low redshifts prior to the final black hole merger.

View Article and Find Full Text PDF

We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

View Article and Find Full Text PDF