Publications by authors named "Zomorrodi R"

Electroencephalography is instrumental in understanding neurophysiological mechanisms underlying working memory. While numerous studies have associated electroencephalography features to working memory, understanding causal relationships leads to better characterization of the neurophysiological mechanisms that are directly linked to working memory. Personalized causal modeling is a tool to discover these direct links between brain features and working memory performance.

View Article and Find Full Text PDF

Background: Atypical sensory reactivity is a cardinal presentation in autism. Within the tactile domain, atypical tactile reactivity (TR) is common, it emerges early, persists into adulthood, and impedes social interaction and daily functioning. Hence, atypical TR is a key target for biological intervention to improve outcomes.

View Article and Find Full Text PDF

Objective: This study aimed to optimally evaluate the effect of the long-interval intracortical inhibition (LICI) in the dorsolateral prefrontal cortex (DLPFC) through transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) by eliminating the volume conductance with signal source estimation and using a realistic sham coil as a control.

Methods: We compared the LICI effects from the DLPFC between the active and sham stimulation conditions in 27 healthy participants. Evoked responses between the two conditions were evaluated at the sensor and source levels.

View Article and Find Full Text PDF

Exposure to stress is known to affect biological aging as well as individuals' susceptibility to a wide variety of mental illnesses, such as schizophrenia. There is an established relationship between the onset of schizophrenia spectrum disorders (SSD) and biological aging. On the other hand, epigenetic modifications, such as DNA methylation (DNAm), are used as biomarkers for biological aging and were previously proven to be altered in schizophrenia.

View Article and Find Full Text PDF

Long-term potentiation (LTP)-like activity can be induced by stimulation protocols such as paired associative stimulation (PAS). We aimed to determine whether PAS-induced LTP-like activity (PAS-LTP) of the dorsolateral prefrontal cortex (DLPFC) is associated with cortical thickness and other structural measures impaired in Alzheimer's dementia (AD). We also explored longitudinal relationships between these brain structures and PAS-LTP response after a repetitive PAS (rPAS) intervention.

View Article and Find Full Text PDF

Unlabelled: Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown.

View Article and Find Full Text PDF

Whether individuals with mild cognitive impairment (MCI) and a history of major depressive disorder (MDD) are at a higher risk for cognitive decline than those with MCI alone is still not clear. Previous work suggests that a reduction in prefrontal cortical theta phase-gamma amplitude coupling (TGC) is an early marker of cognitive impairment. This study aimed to determine whether using a TGC cutoff is better at separating individuals with MCI or MCI with remitted MDD (MCI+rMDD) on cognitive performance than their clinical diagnosis.

View Article and Find Full Text PDF

Electroencephalogram (EEG) microstates, which represent quasi-stable patterns of scalp topography, are a promising tool that has the temporal resolution to study atypical spatial and temporal networks in autism spectrum disorder (ASD). While current literature suggests microstates are atypical in ASD, their clinical utility, i.e.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a leading cause of disability worldwide. One of the most efficacious treatments for treatment-resistant MDD is electroconvulsive therapy (ECT). Recently, magnetic seizure therapy (MST) was developed as an alternative to ECT due to its more favorable side effect profile.

View Article and Find Full Text PDF

Electroencephalographic (EEG) microstates can provide a unique window into the temporal dynamics of large-scale brain networks across brief (millisecond) timescales. Here, we analysed fundamental temporal features of microstates extracted from the broadband EEG signal in a large (N = 139) cohort of children spanning early-to-middle childhood (4-12 years of age). Linear regression models were used to examine if participants' age and biological sex could predict the temporal parameters GEV, duration, coverage, and occurrence, for five microstate classes (A-E) across both eyes-closed and eyes-open resting-state recordings.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) can offer therapeutic benefits and provide value in neurophysiological research. One of the newer TMS paradigms is theta burst stimulation (TBS) which can be delivered in two patterns: continuous (cTBS - inducing LTD-like effects) and intermittent (iTBS - inducing LTP-like effects). This review paper aims to explore studies that have utilized TBS protocols over different areas of the cortex to study the neurophysiological functions and treatment of patients with schizophrenia.

View Article and Find Full Text PDF

Background: Alzheimer's dementia (AD) is associated with electroencephalography (EEG) abnormalities including in the power ratio of beta to theta frequencies. EEG studies in mild cognitive impairment (MCI) have been less consistent in identifying such abnormalities. One potential reason is not excluding the EEG aperiodic components, which are less associated with cognition than the periodic components.

View Article and Find Full Text PDF

IL-34 shares a common receptor with M-CSF, while it can bind to other distinct receptors including protein-tyrosine phosphatase zeta (PTPζ), and syndecan1 (SDC-1). In physiological conditions, IL-34 has a critical role in the maintenance and development of Langerhans and microglial cells in part through PTPζ ligation. Conversely, in autoimmune diseases such as rheumatoid arthritis (RA), SDC-1-induced phosphorylation of M-CSFR was responsible for the pathological effect of IL-34 in patient cells and/or preclinical models.

View Article and Find Full Text PDF

Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an effective way to evaluate neurophysiological processes at the level of the cortex. To further characterize the TMS-evoked potential (TEP) generated with TMS-EEG, beyond the motor cortex, we aimed to distinguish between cortical reactivity to TMS versus non-specific somatosensory and auditory co-activations using both single-pulse and paired-pulse protocols at suprathreshold stimulation intensities over the left dorsolateral prefrontal cortex (DLPFC). Fifteen right-handed healthy participants received six blocks of stimulation including single and paired TMS delivered as active-masked (i.

View Article and Find Full Text PDF

Background: Intermittent theta burst stimulation (iTBS) targeting the left dorsolateral prefrontal cortex is effective for treatment-resistant depression, but the effects of iTBS on neurophysiological markers remain unclear. Here, we indexed transcranial magnetic stimulation-electroencephalography (TMS-EEG) markers, specifically, the N45 and N100 amplitudes, at baseline and post-iTBS, comparing separated and contiguous iTBS schedules. TMS-EEG markers were also compared between iTBS responders and nonresponders.

View Article and Find Full Text PDF

The cortical response to transcranial magnetic stimulation (TMS) has notable inter-trial variability. One source of this variability can be the influence of the phase and power of pre-stimulus neuronal oscillations on single-trial TMS responses. Here, we investigate the effect of brain oscillatory activity on TMS response in 49 distinct healthy participants (64 datasets) who had received single-pulse TMS over the left dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a leading cause of disability worldwide. One of the most efficacious treatments for treatment-resistant MDD is electroconvulsive therapy (ECT). Recently, magnetic seizure therapy (MST) was developed as an alternative to ECT due to its more favorable side effect profile.

View Article and Find Full Text PDF

There are growing application of machine learning models to study the intricacies of non-linear and non-stationary characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) data in neurobiologically complex and heterogeneous conditions such as autism spectrum disorder (ASD). Such tools have potential diagnostic applications, and given the highly heterogeneous presentation of ASD, might prove fruitful in early detection and therefore could facilitate very early intervention. We conducted a systematic review (PROSPERO ID#CRD42021257438) by searching PubMed, EMBASE, and PsychINFO for machine learning approaches for EEG and MEG analyses in ASD.

View Article and Find Full Text PDF

Atypical spatial organization and temporal characteristics, found via resting state electroencephalography (EEG) microstate analysis, have been associated with psychiatric disorders but these temporal and spatial parameters are less known in autism spectrum disorder (ASD). EEG microstates reflect a short time period of stable scalp potential topography. These canonical microstates (i.

View Article and Find Full Text PDF

Identifying genuine cortical stimulation-elicited electroencephalography (EEG) is crucial for improving the validity and reliability of neurophysiology using transcranial magnetic stimulation (TMS) combined with EEG. In this study, we evaluated the spatiotemporal profiles of single-pulse TMS-elicited EEG response administered to the left dorsal prefrontal cortex (DLPFC) in 28 healthy participants, employing active and sham stimulation conditions. We hypothesized that the early component of TEP would be activated in active stimulation compared with sham stimulation.

View Article and Find Full Text PDF

Background: The efficacy of repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (dlPFC) has been established in patients with treatment-resistant depression (TRD), suggesting that alterations in signal propagation from the left dlPFC to other brain regions may be linked to the pathophysiology of TRD. Alterations at the cellular level, including dysfunction of oligodendrocytes, may contribute to these network abnormalities. The objectives of the present study were to compare signal propagation from the left dlPFC to other neural networks in patients with TRD and healthy controls.

View Article and Find Full Text PDF

Objective: This meta-analysis aimed to synthesize the existing literature on how different parameters of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG) modulate the amplitudes of TMS-evoked potentials (TEPs).

Methods: A comprehensive search was run in PubMed and completed by Google Scholar to find articles studying healthy participants who underwent single pulse TMS-EEG sessions over their left primary motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). The amplitudes of the most commonly investigated TEP peaks for DLPFC stimulation (positives: 25, 60, 185 ms, negatives: 40, 100 ms) and M1 stimulation (positives: 30, 55,180 ms and negatives: 15, 45, 100, 280 ms) were extracted from studies.

View Article and Find Full Text PDF

Background: Stuttering is a disorder that begins in childhood and can persist into adulthood. In the present study, it was hypothesized that the combined intervention of transcranial direct current stimulation (tDCS) and Delayed Auditory Feedback (DAF) would cause greater improvement in speech fluency in comparison to the intervention with DAF alone.

Methods: A randomized, double-blind, sham-controlled clinical trial was conducted to investigate the effects of the combined intervention.

View Article and Find Full Text PDF

Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (Mϴ) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human Mϴs exposed to Spike protein activate IRAK4 phosphorylation.

View Article and Find Full Text PDF