Publications by authors named "Zoltan Tibai"

A new type of terahertz source containing only two optical elements - a volume phase holographic grating, and a semiconductor nonlinear slab - is proposed. The setup does not require any microstructuring, has only one diffraction order, and can be scaled to large pump sizes without any principal limitations. Furthermore, it can be easily adapted to different pump wavelengths and THz phase-matching frequencies.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, compact, imaging-free, tilted-pulse-front (TPF) pumped terahertz (THz) source based on a LiNbO slab with a small wedge angle (< 8°) and with an echelon microstructure on its input surface has been demonstrated. Single-cycle pulses of more than 40-µJ energy and 0.28-THz central frequency have been generated by 100-mJ, 400-fs pump pulses with 4.

View Article and Find Full Text PDF

In recent years several microstructured lithium niobate THz pulse source were suggested for high-energy applications. Two types of those, the reflective and the transmissive nonlinear slab are adopted here for semiconductors. These new sources are scalable both in THz energy and size.

View Article and Find Full Text PDF

We present an improved model for electron acceleration in vacuum with high-energy THz pulses that includes spatiotemporal effects. In our calculations, we examined the acceleration with 300 GHz and 3.0 THz central frequency THz pulses with properties corresponding to common sources, and compared the Gaussian and Poisson spectral amplitudes and the associated time profiles of the electric fields.

View Article and Find Full Text PDF

We have developed a waveguide structure for electron acceleration using a few µJ energy THz pulse. The metallic device focuses the incoming linearly polarized nearly single-cycle THz pulse, hence increasing the peak electric field strength. We experimentally verified the gain and the temporal profile of the electric field in the structure using electro-optic sampling technique.

View Article and Find Full Text PDF

A novel THz source, based on optical rectification in LiNbO using the tilted-pulse-front technique, is proposed and experimentally demonstrated. The pulse-front tilt is introduced by a volume phase holographic grating, efficiently used at perpendicular incidence in transmission, and the THz pulses are produced in a LiNbO plane-parallel nonlinear echelon slab, arranged parallel to the grating. As a unique feature, the entire setup has a plane-parallel, transmission-type configuration, which straightforwardly enables distortion-free scaling to large sizes, high pulse energies and high THz field strengths.

View Article and Find Full Text PDF

A new type of THz source, working in reflection geometry, is proposed, where the pulse-front-tilt is introduced by a periodically micro-structured metal profile. For optical coupling, high refractive index nanocomposite fluid is used between the nonlinear optical material and the structured metal surface. Numerical simulations predict ∼87 and ∼85% optimized diffraction efficiencies for lithium niobate and lithium tantalate at 1030 and 800 nm pump wavelengths.

View Article and Find Full Text PDF

A tilted-pulse-front pumped terahertz pulse source is proposed for the generation of extremely high field single-cycle terahertz pulses. The very simple and compact source consists of a single crystal slab having a blazed reflection grating grooved in its back surface. Its further important advantages are the energy scalability and the symmetric THz beam profile.

View Article and Find Full Text PDF

Research at modern light sources continues to improve our knowledge of the natural world, from the subtle workings of life to matter under extreme conditions. Free-electron lasers, for instance, have enabled the characterization of biomolecular structures with sub-ångström spatial resolution, and paved the way to controlling the molecular functions. On the other hand, attosecond temporal resolution is necessary to broaden our scope of the ultrafast world.

View Article and Find Full Text PDF