By a broad-range PCR, we detected a novel herpesvirus (HV) in the specimen of a wels catfish (Silurus glanis) presenting disseminated, carp pox-like dermal lesions all over its body. The sequence analysis of the 463-bp PCR product from the viral DNA polymerase gene indicated the presence of a hitherto unknown virus, a putative member of the family Alloherpesviridae in the sample. Another PCR, targeting the terminase gene of fish HVs, provided an additional genomic fragment of over 1,000 bp.
View Article and Find Full Text PDFViruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants.
View Article and Find Full Text PDFThe negative samples of a collection, established originally for seeking new adeno- and herpesviruses in lower vertebrates, were screened for the pres-ence of circoviruses by a consensus nested PCR targeting the gene coding for the replication-associated protein. Six fish samples representing five species, namely asp (Aspius aspius), roach (Rutilus rutilus), common bream (Abramis brama), round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis), as well as three frog samples were found positive for circoviral DNA. Sequence analysis of the amplicons indicated the presence of three novel putative circo-like viruses and a circovirus in Hungarian fishes and one novel circovirus in a common toad (Bufo bufo), and another one in a dead and an alive specimen of green tree frog (Litoria caerulea), respectively.
View Article and Find Full Text PDFRho family small GTPases are involved in the spatio-temporal regulation of several physiological processes. They operate as molecular switches based on their GTP- or GDP-bound state. Their GTPase activator proteins (Rho/Rac GAPs) are able to increase the GTP hydrolysis of small GTPases, which turns them to an inactive state.
View Article and Find Full Text PDF