Bacterial outer membrane vesicles (OMVs) are emerging as important players in the host-microbiome interaction, while also proving to be a promising platform for vaccine development and targeted drug delivery. The available methods for measuring their biodistribution, however, are limited. We aimed to establish a high-efficiency radiolabeling method for the treatment of OMVs.
View Article and Find Full Text PDFThe central nervous system (CNS) encompasses the brain, spinal cord, and nerves, where both brain and spinal cord are safeguarded by the meninges. However, serious bacterial, viral, or fungal infection in the brain causes life-threatening diseases such as meningitis. Engineered nanostructures hold great promise for not only in the diagnosis but also for combating microbial drug resistance owing to their high surface area and innate antibacterial activity.
View Article and Find Full Text PDFIn the course of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC at the production site. Repeated attempts to isolate and purify these unknown impurities by preparative liquid chromatography yielded small amounts of materials whose main components were the unknown impurities, but were still contaminated with other VLB/VCR-related compounds. In spite of these difficulties, by using a combination of high-resolution (LC-)MS/MS and off-line 1D and 2D ultra high-field NMR techniques and leaning on the relevant spectroscopic data for VLB and VCR as discussed in Part 1 [1], we could unambiguously solve the structures of, and could give a complete spectral characterization for, the trace impurities.
View Article and Find Full Text PDF