Publications by authors named "Zoltan Donko"

Using data from equilibrium molecular dynamics computer simulations we have built up a catalog of response functions for the Coulomb one-component plasma over a wide range of Γ coupling values, including the strongly coupled Γ>1 liquid regime. We focus on the domain of negative compressibility (Γ>3), where the proper response displays an acausal behavior, implying a modification of the relation between its real and imaginary parts in the Kramers-Kronig relations. We give a description of the details of this acausal feature, in both the frequency and time domains.

View Article and Find Full Text PDF

The equilibrium structure and the dispersion relations of collective excitations in trilayer Yukawa systems in the strongly coupled liquid regime are examined. The equilibrium correlations reveal a variety of structures in the liquid phase, reminiscent of the corresponding structures in the solid phase. At small layer separation substitutional disorder becomes the governing feature.

View Article and Find Full Text PDF

A many-body system of charged particles interacting via a pairwise Yukawa potential, the so-called Yukawa one-component plasma (YOCP), is a good approximation for a variety of physical systems. Such systems are completely characterized by two parameters: the screening parameter, κ, and the nominal coupling strength, Γ. It is well known that the collective spectrum of the YOCP is governed by a longitudinal acoustic mode, both in the weakly and strongly coupled regimes.

View Article and Find Full Text PDF

Single frequency, geometrically symmetric Radio-Frequency (rf) driven atmospheric pressure plasmas exhibit temporally and spatially symmetric patterns of electron heating, and consequently, charged particle densities and fluxes. Using a combination of phase-resolved optical emission spectroscopy and kinetic plasma simulations, we demonstrate that tailored voltage waveforms consisting of multiple rf harmonics induce targeted disruption of these symmetries. This confines the electron heating to small regions of time and space and enables the electron energy distribution function to be tailored.

View Article and Find Full Text PDF

Self-organized spatial structures in the light emission from the ion-ion capacitive rf plasma of a strongly electronegative gas (CF_{4}) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma.

View Article and Find Full Text PDF

We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem.

View Article and Find Full Text PDF

Wave dispersion relations in the strongly coupled liquid phase of a two-dimensional system of dust grains interacting via both Yukawa and dipole interactions are investigated. The model system comprises a layer of charged superparamagnetic grains in a plasma in an external, uniform magnetic field B whose magnitude and direction can be varied. Because the induced magnetic dipole moments of the grains lie along B, the interaction between the grains becomes anisotropic as B is tilted with respect to the layer.

View Article and Find Full Text PDF

A rotating dusty plasma apparatus was constructed to provide the possibility of experimental emulation of extremely high magnetic fields by means of the Coriolis force, observable in a corotating measurement frame. We present collective excitation spectra for different rotation rates with a magnetic induction equivalent of up to 3200 T. We identify the onset of magnetoplasmon-equivalent mode dispersion in the rotating macroscopic two-dimensional single-layer dusty plasma.

View Article and Find Full Text PDF

We analyze via theoretical approaches and molecular dynamics simulations the collective mode structure of strongly coupled two-dimensional binary Yukawa systems, for selected density, mass, and charge ratios, both in the liquid and crystalline solid phases. Theoretically, the liquid phase is described through the quasilocalized charge approximation (QLCA) approach, while in the crystalline phase we study the centered honeycomb and the staggered rectangular crystal structures through the standard harmonic phonon approximation. We identify "longitudinal" and "transverse" acoustic and optic modes and find that the longitudinal acoustic mode evolves from its weakly coupled counterpart in a discontinuous nonperturbative fashion.

View Article and Find Full Text PDF

We have worked out the details of a single camera, single exposure method to perform three-dimensional imaging of a finite particle cluster. The procedure is based on the plenoptic imaging principle and utilizes a commercial Lytro light field still camera. We demonstrate the capabilities of our technique on a single layer particle cluster in a dusty plasma, where the camera is aligned and inclined at a small angle to the particle layer.

View Article and Find Full Text PDF

The electrical characteristics of a photoelectric Franck-Hertz cell are measured in argon gas over a wide range of pressure, covering conditions where elastic collisions play an important role, as well as conditions where ionization becomes significant. Photoelectron pulses are induced by the fourth harmonic UV light of a diode-pumped Nd:YAG laser. The electron kinetics, which is far more complex compared to the naive picture of the Franck-Hertz experiment, is analyzed via Monte Carlo simulation.

View Article and Find Full Text PDF

We analyze the acoustic collective excitations in two- and three-dimensional binary Yukawa systems, consisting of two components with different masses. A theoretical analysis reveals a profound difference between the weakly and strongly correlated limits: at weak coupling the two components interact via the mean field only and the oscillation frequency is governed by the light component. In the strongly correlated limit the mode frequency is governed by the combined mass, where the heavy component dominates.

View Article and Find Full Text PDF

Ground-state structures of finite, cylindrically confined two-dimensional Yukawa systems composed of charged superparamagnetic dust grains in an external magnetic field are investigated numerically, using molecular dynamic simulations and lattice summation methods. The ground-state configuration of the system is identified using, as an approximation, the experimentally obtained shape of the horizontal confinement potential in a classical single-layer dusty plasma experiment with nonmagnetic grains. Results are presented for the dependence of the number density and lattice parameters of the dust layer on (1) the ratio of the magnetic dipole-dipole force to electrostatic force between the grains and (2) the orientation of the grain magnetic moment with respect to the layer.

View Article and Find Full Text PDF

The static and dynamic (complex) shear viscosity of a single-layer dusty plasma is measured by applying, respectively, a stationary and a periodically modulated shear stress, induced by the light pressure of manipulating laser beams. Under static conditions we observe a decrease of the viscosity with increasing shear rate, the so-called shear-thinning behavior. Under oscillating shear both the magnitude and the ratio of the dissipative and elastic contributions to the complex viscosity show strong frequency dependence, as the system changes from viscous to elastic in nature with increasing excitation frequency.

View Article and Find Full Text PDF

Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the ϕ{D}(r)=μ{2}/r{3} repulsive interaction potential; μ is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior.

View Article and Find Full Text PDF

We report a series of complex (dusty) plasma experiments, aimed at the study of the detailed time evolution of the recrystallization process following a rapid quench of a two-dimensional dust liquid. The experiments were accompanied by large-scale (million-particle) molecular dynamics simulations, assuming Yukawa-type interparticle interaction. Both experiment and simulation show a ∝t(α) (power-law) dependence of the linear crystallite domain size as measured by the bond-order correlation length, translational correlation length, dislocation (defect) density, and a direct size measurement algorithm.

View Article and Find Full Text PDF