Publications by authors named "Zoltan Bardosi"

Purpose: Multi-zoom microscopic surface reconstructions of operating sites, especially in ENT surgeries, would allow multimodal image fusion for determining the amount of resected tissue, for recognizing critical structures, and novel tools for intraoperative quality assurance. State-of-the-art three-dimensional model creation of the surgical scene is challenged by the surgical environment, illumination, and the homogeneous structures of skin, muscle, bones, etc., that lack invariant features for stereo reconstruction.

View Article and Find Full Text PDF

Purpose: A patient registration and real-time surgical navigation system and a novel device and method (Noctopus) is presented. With any tracking system technology and a patient/target-specific registration marker configuration, submillimetric target registration error (TRE), high-precise application accuracy for single or multiple anatomical targets in image-guided neurosurgery or ENT surgery is realized.

Methods: The system utilizes the advantages of marker-based registration technique and allows to perform automatized patient registration using on the device attached and with patient scanned four fiducial markers.

View Article and Find Full Text PDF

In head and neck squamous cell carcinoma (HNSCC) pathologic cervical lymph nodes (LN) remain important negative predictors. Current criteria for LN-classification in contrast-enhanced computed-tomography scans (contrast-CT) are shape-based; contrast-CT imagery allows extraction of additional quantitative data ("features"). The data-driven technique to extract, process, and analyze features from contrast-CTs is termed "radiomics".

View Article and Find Full Text PDF

Automating fiducial detection and localization in the patient's pre-operative images can lead to better registration accuracy, reduced human errors, and shorter intervention time. Most current approaches are optimized for a single marker type, mainly spherical adhesive markers. A fully automated algorithm is proposed and evaluated for screw and spherical titanium fiducials, typically used in high-accurate frameless surgical navigation.

View Article and Find Full Text PDF

Purpose: Interactive image-guided surgery technologies enable accurate target localization while preserving critical nearby structures in many surgical interventions. Current state-of-the-art interfaces largely employ traditional anatomical cross-sectional views or augmented reality environments to present the actual spatial location of the surgical instrument in preoperatively acquired images. This work proposes an alternative, simple, minimalistic visual interface intended to assist during real-time surgical target localization.

View Article and Find Full Text PDF

Purpose: An intraoperative real-time respiratory tumor motion prediction system with magnetic tracking technology is presented. Based on respiratory movements in different body regions, it provides patient and single/multiple tumor-specific prediction that facilitates the guiding of treatments.

Methods: A custom-built phantom patient model replicates the respiratory cycles similar to a human body, while the custom-built sensor holder concept is applied on the patient's surface to find optimum sensor number and their best possible placement locations to use in real-time surgical navigation and motion prediction of internal tumors.

View Article and Find Full Text PDF

PURPOSE : A robotic intraoperative laser guidance system with hybrid optic-magnetic tracking for skull base surgery is presented. It provides in situ augmented reality guidance for microscopic interventions at the lateral skull base with minimal mental and workload overhead on surgeons working without a monitor and dedicated pointing tools. METHODS : Three components were developed: a registration tool (Rhinospider), a hybrid magneto-optic-tracked robotic feedback control scheme and a modified robotic end-effector.

View Article and Find Full Text PDF

Purpose: Computer-aided navigation is widely used in ENT surgery. The position of a surgical instrument is shown in the CT/MR images of the patient and can thus be a good support for the surgeon. The accuracy is highly dependent on the registration done prior to surgery.

View Article and Find Full Text PDF

Purpose: The target registration error (TRE) is a crucial parameter to estimate the potential usefulness of computer-assisted navigation intraoperatively. Both image-to-patient registration on base of rigid-body registration and TRE prediction methods are available for spatially isotropic and anisotropic data. This study presents a thorough validation of data obtained in an experimental operating room setting with CT images.

View Article and Find Full Text PDF

Purpose: The fiducial localization error distribution (FLE) and fiducial configuration govern the application accuracy of point-based registration and drive target registration error (TRE) prediction models. The error of physically localizing patient fiducials ([Formula: see text]) is negligible when a registration probe matches the implanted screws with mechanical precision. Reliable trackers provide an unbiased estimate of the positional error ([Formula: see text]) with cheap repetitions.

View Article and Find Full Text PDF

Background And Objectives: During navigated procedures a tracked pointing device is used to define target structures in the patient to visualize its position in a registered radiologic data set. When working with endoscopes in minimal invasive procedures, the target region is often difficult to reach and changing instruments is disturbing in a challenging, crucial moment of the procedure. We developed a device for touch less navigation during navigated endoscopic procedures.

View Article and Find Full Text PDF