We present a theoretical formalism to describe the amplification of two monochromatic waves counter-propagating in a rare-earth-doped optical fiber amplifier. Interaction of the waves through a dynamical population inversion grating inscribed in the active fiber by the waves during their amplification results in a strong power transfer from one wave to another providing a preferable amplification of one wave at the expense of another. In this sense, the effect is similar to stimulated Brillouin scattering and is expected to be observed with both pumped and unpumped rare-earth-doped fibers possessing a finite polarizability difference between the excited and ground states.
View Article and Find Full Text PDFSelf-injection locking to an external fiber cavity is an efficient technique enabling drastic linewidth narrowing of semiconductor lasers. Recently, we constructed a simple dual-frequency laser source that employs self-injection locking of a DFB laser in the external ring fiber cavity and Brillouin lasing in the same cavity. The laser performance characteristics are on the level of the laser modules commonly used with BOTDA.
View Article and Find Full Text PDFBrillouin lasers, with their unique properties, offer an intriguing solution for many applications, yet bringing their performance to integrated platforms has remained questionable. We present a theoretical framework to describe Brillouin lasing in integrated ring microcavities. Specifically, a general case of a mismatch between the Brillouin shift and the microresonator inter-mode spacing is considered.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFHere at the first time we suggested that the surface plasmon-polariton phenomenon which it is well described in metallic nanostructures could also be used for explanation of the unexpectedly strong oxidative effects of the low-intensity laser irradiation in living matters (cells, tissues, organism). We demonstrated that the narrow-band laser emitting at 1265 nm could generate significant amount of the reactive oxygen species (ROS) in both HCT116 and CHO-K1 cell cultures. Such cellular ROS effects could be explained through the generation of highly localized plasmon-polaritons on the surface of mitochondrial crista.
View Article and Find Full Text PDFRecently, many interdisciplinary community researchers have focused their efforts on study of the low-level light irradiation effects (photobiomodulation, PBM) as a promising therapeutic technology. Among the priorities, a search of new wavelength ranges of laser radiation to enhance the laser prospects in treatment of autoimmune and cancer diseases commonly accompanied by disorders in the antioxidant system of the body. The laser wavelengths within 1265-1270 nm corresponds to the maximum oxygen absorption band.
View Article and Find Full Text PDFThe interaction of a surface plasmon polariton wave of the far-infrared regime propagating in a single-walled carbon nanotube with a drift current is theoretically investigated. It is shown that under the synchronism condition a surface plasmon polariton amplification mechanism is implemented due to the transfer of electromagnetic energy from a drift current wave into a terahertz surface wave propagating along the surface of a single-walled carbon nanotube. Numerical calculations show that for a typical carbon nanotube surface plasmon polariton amplification coefficient reaches huge values of the order of 10 сm, which makes it possible to create a carbon-nanotube-based spaser.
View Article and Find Full Text PDFOpt Express
September 2017
We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber.
View Article and Find Full Text PDFPhotodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications.
View Article and Find Full Text PDFWe demonstrate the effect of the modulation instability of surface plasmon polariton waves in a layer structure of subwavelength thickness. The expressions describing the dispersion and nonlinear properties of this structure are derived. It is shown that the modulation instability effect could be used for the generation of ultrashort pulse trains and the localization of optical fields with a scale less than 1 micron.
View Article and Find Full Text PDFWe report the interpulse dynamics in fiber soliton laser because of depletion and relaxation of gain and absorption. The soliton interaction range is shown to depend largely on the relaxation time of dissipative parameters while the compensation of the dynamical gain and absorption depletion leads to the formation of stationary soliton groups with unequal interpulse distances.
View Article and Find Full Text PDF