Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited.
View Article and Find Full Text PDFUnlike several other tumor types, prostate cancer rarely responds to immune checkpoint blockade (ICB). To define tumor cell intrinsic factors that contribute to prostate cancer progression and resistance to ICB, we analyzed prostate cancer epithelial cells from castration-sensitive and -resistant samples using implanted tumors, cell lines, transgenic models and human tissue. We found that castration resulted in increased expression of interleukin-8 (IL-8) and its probable murine homolog Cxcl15 in prostate epithelial cells.
View Article and Find Full Text PDFBackground: Prostate cancer is the second leading cause of cancer-related death in men in the USA; death occurs when patients progress to metastatic castration-resistant prostate cancer (CRPC). Although immunotherapy with the Food and Drug Administration-approved vaccine sipuleucel-T, which targets prostatic acid phosphatase (PAP), extends survival for 2-4 months, the identification of new immunogenic tumor-associated antigens (TAAs) continues to be an unmet need.
Methods: We evaluated the differential expression profile of castration-resistant prostate epithelial cells that give rise to CRPC from mice following an androgen deprivation/repletion cycle.
Purpose: Intratumoral immunosuppression mediated by myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) represents a potential mechanism of immune checkpoint inhibitor (ICI) resistance in solid tumors. By promoting TAM and MDSC infiltration, IL1β may drive adaptive and innate immune resistance in renal cell carcinoma (RCC) and in other tumor types.
Experimental Design: Using the RENCA model of RCC, we evaluated clinically relevant combinations of anti-IL1β plus either anti-PD-1 or the multitargeted tyrosine kinase inhibitor (TKI), cabozantinib.
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer that has proven refractory to immunotherapy. Previously, treatment with the DNA hypomethylating drug decitabine (5-aza-dC; DAC) extended survival in the KPC-Brca1 mouse model of PDAC. Here we investigated the effects of DAC in the original KPC model and tested combination therapy with DAC followed by immune checkpoint inhibitors (ICI).
View Article and Find Full Text PDFAlthough it is known that inflammation plays a critical role in prostate tumorigenesis, the underlying processes are not well understood. Based on analysis of genetically engineered mouse models combined with correlative analysis of expression profiling data from human prostate tumors, we demonstrate a reciprocal relationship between inflammation and the status of the homeobox gene associated with prostate cancer initiation. We find that cancer initiation in aged mutant mice correlates with enrichment of specific immune populations and increased expression of immunoregulatory genes.
View Article and Find Full Text PDFRadiotherapy (RT) enhances innate and adaptive antitumor immunity; however, the effects of radiation on suppressive immune cells, such as regulatory T cells (Treg), in the tumor microenvironment (TME) are not fully elucidated. Although previous reports suggest an increased Treg infiltration after radiation, whether these Tregs are functionally suppressive remains undetermined. To test the hypothesis that RT enhances the suppressive function of Treg in the TME, we selectively irradiated implanted tumors using the small animal radiation research platform (SARRP), which models stereotactic radiotherapy in human patients.
View Article and Find Full Text PDFProstate cancer is the second most common cause of cancer mortality in men in the United States. As is the case for other tumor types, accumulating evidence suggests an important role for myeloid-derived cells in the promotion and progression of prostate cancer. Here, we briefly describe myeloid-derived cells that interact with tumor cells and what is known about their immune suppressive function.
View Article and Find Full Text PDFPurpose Epigenetic alterations measured in blood may help guide breast cancer treatment. The multisite prospective study TBCRC 005 was conducted to examine the ability of a novel panel of cell-free DNA methylation markers to predict survival outcomes in metastatic breast cancer (MBC) using a new quantitative multiplex assay (cMethDNA). Patients and Methods Ten genes were tested in duplicate serum samples from 141 women at baseline, at week 4, and at first restaging.
View Article and Find Full Text PDFMethods to determine individualized breast cancer risk lack sufficient sensitivity to select women most likely to benefit from preventive strategies. Alterations in DNA methylation occur early in breast cancer. We hypothesized that cancer-specific methylation markers could enhance breast cancer risk assessment.
View Article and Find Full Text PDFLung cancer is the leading cause of death from malignant diseases worldwide, with the non-small cell (NSCLC) subtype accounting for the majority of cases. NSCLC is characterized by frequent genomic imbalances and copy number variations (CNVs), but the epigenetic aberrations that are associated with clinical prognosis and therapeutic failure remain not completely identify. In the present study, a total of 55 lung cancer patients were included and we conducted genomic and genetic expression analyses, immunohistochemical protein detection, DNA methylation and chromatin immunoprecipitation assays to obtain genetic and epigenetic profiles associated to prognosis and chemoresponse of NSCLC patients.
View Article and Find Full Text PDFIt is well documented that tumor cells undergo dramatic genetic and epigenetic changes during initial establishment as cell lines and in subsequent serial passaging, and that the resultant cell lines may have evolved significantly from the primary tumors from which they were derived. This has potential implications due to their widespread use in drug response experiments and studies of genomic function. One approach to optimizing the design of such cell line studies is to identify and use the cell lines that faithfully recapitulate critical features of primary tumors.
View Article and Find Full Text PDFThe ability to consistently detect cell-free tumor-specific DNA in peripheral blood of patients with metastatic breast cancer provides the opportunity to detect changes in tumor burden and to monitor response to treatment. We developed cMethDNA, a quantitative multiplexed methylation-specific PCR assay for a panel of ten genes, consisting of novel and known breast cancer hypermethylated markers identified by mining our previously reported study of DNA methylation patterns in breast tissue (103 cancer, 21 normal on the Illumina HumanMethylation27 Beadchip) and then validating the 10-gene panel in The Cancer Genome Atlas project breast cancer methylome database. For cMethDNA, a fixed physiologic level (50 copies) of artificially constructed, standard nonhuman reference DNA specific for each gene is introduced in a constant volume of serum (300 μL) before purification of the DNA, facilitating a sensitive, specific, robust, and quantitative assay of tumor DNA, with broad dynamic range.
View Article and Find Full Text PDFEarly full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations.
View Article and Find Full Text PDF