Online techniques for monitoring biofilm formation and evolution are limited, especially as regards its application in flowing water systems. This is chiefly due to the absence of efficient non-destructive and non-invasive sensing methods. In this study, a sensitive electrical resistance spectroscopy technique is developed to monitor non-invasively and in real time the growth of biofilms over metallic surfaces inside water flow systems.
View Article and Find Full Text PDFThis study aims to provide insights into biofilm resistance associated with their structural properties acquired during formation and development. On this account, the wetting and imbibition behavior of dehydrated biofilms grown on stainless steel electropolished substrates is thoroughly examined at different biofilm ages. A polar liquid (water) and a non-polar liquid (diiodomethane) are employed as wetting agents in the form of sessile droplets.
View Article and Find Full Text PDFAdsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) from solutions in hexane and hexadecane respectively as well as in acetonitrile for both thiophenic compounds was investigated with sorbents of three activated carbons and their oxidized counterparts. The raw sorbents were of different surface acidity. Oxygen surface groups created after oxidation increased the adsorption of thiophenic compounds via polar interactions.
View Article and Find Full Text PDFUltradeep desulfurization of fuels is a method of enormous demand due to the generation of harmful compounds during the burning of sulfur-containing fuels, which are a major source of environmental pollution. Among the various desulfurization methods in application, adsorptive desulfurization (ADS) has low energy demand and is feasible to be employed at ambient conditions without the addition of chemicals. The most crucial factor for ADS application is the selection of the adsorbent, and, currently, a new family of porous materials, metal organic frameworks (MOFs), has proved to be very effective towards this direction.
View Article and Find Full Text PDFMagnetic graphene oxide was impregnated with polymers for the preparation of nanocomposite adsorbents to be examined for the adsorptive removal of a typical endocrine disruptor, bisphenol-A (BPA) from aqueous solutions. The polymers used were polystyrene, chitosan and polyaniline. The nanocomposites prepared were characterized for their structure, morphology and surface chemistry.
View Article and Find Full Text PDF