Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission's (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions.
View Article and Find Full Text PDFA novel mixed-ligand zinc(II) coordination polymer, {[Zn(μ-4,4'-bipy)(μ-3-bpdh)(H(2)O)(2)](ClO(4))(2)·(4,4'-bipy)(0.5)}(n) (1); 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and 4,4'-bipy=4,4'-bipyridine, has been synthesized and characterized by IR, (1)HNMR and (13)CNMR spectroscopy. The single crystal X-ray data of compound 1 shows that this coordination polymer grows in two dimensions by two different bridging ligands, 4,4'-bipy and 3-bpdh.
View Article and Find Full Text PDF