Magnetic nanowires (MNWs) can have their moments reversed via several mechanisms that are controlled using the composition, length, diameter, and density of nanowires in arrays as-synthesized or as individual nanoparticles in assays or gels. This tailoring of magnetic reversal leads to unique properties that can be used as a signature for reading out the type of MNW for applications as nano-barcodes. When synthesized inside track-etched polycarbonate membranes, the resulting MNW-embedded membranes can be used as biocompatible bandaids for detection without contact or optical sighting.
View Article and Find Full Text PDFThe micromanipulation of biological samples is important for microbiology, pharmaceutical science, and related bioengineering fields. In this work, we report the fabrication and characterization of surface-attached microbeam arrays of 20 μm width and 25 μm height made of poly(N-isopropylacrylamide), a thermoresponsive polymer, with embedded spherical or octopod FeO nanoparticles. Below 32 °C, the microbeams imbibe water and buckle with an amplitude of approximately 20 μm.
View Article and Find Full Text PDF