Publications by authors named "Zohreh Davoudi"

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

With the aim of studying nonperturbative out-of-equilibrium dynamics of high-energy particle collisions on quantum simulators, we investigate the scattering dynamics of lattice quantum electrodynamics in 1+1 dimensions. Working in the bosonized formulation of the model and in the thermodynamic limit, we use uniform-matrix-product-state tensor networks to construct multiparticle wave-packet states, evolve them in time, and detect outgoing particles post collision. This facilitates the numerical simulation of scattering experiments in both confined and deconfined regimes of the model at different energies, giving rise to rich phenomenology, including inelastic production of quark and meson states, meson disintegration, and dynamical string formation and breaking.

View Article and Find Full Text PDF

The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely theoretically unexplored due to inadequacy of Monte-Carlo-based computational techniques in overcoming a sign problem. Quantum computing offers a sign-problem-free approach, but evaluating thermal expectation values is generally resource intensive on quantum computers. To facilitate thermodynamic studies of gauge theories, we propose a generalization of the thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics, and numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach, including mapping a chiral phase transition in the model at finite temperature and chemical potential.

View Article and Find Full Text PDF

Neutrinoless double-β (0νββ) decay of certain atomic isotopes, if observed, will have significant implications for physics of neutrinos and models of physics beyond the standard model. In the simplest scenario, if the mass of the light neutrino of the standard model has a Majorana component, it can mediate the decay. Systematic theoretical studies of the decay rate in this scenario, through effective field theories matched to ab initio nuclear many-body calculations, are needed to draw conclusions about the hierarchy of neutrino masses, and to plan the design of future experiments.

View Article and Find Full Text PDF

Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806  MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the significance of short-distance nuclear effects in double-β decay through lattice QCD calculations, focusing on the transition from neutron-neutron to proton-proton.
  • These nuclear effects, represented by the isotensor axial polarizability, are found to be comparable in size to the adjustments made to the axial current in nuclear models, indicating a potential oversight in previous calculations.
  • The findings suggest that future models for neutrinoful and neutrinoless double-β decays should incorporate these short-distance effects to enhance the accuracy of predictions for upcoming experimental searches.
View Article and Find Full Text PDF

The nuclear matrix element determining the pp→de^{+}ν fusion cross section and the Gamow-Teller matrix element contributing to tritium β decay are calculated with lattice quantum chromodynamics for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3) flavor-symmetric value of the quark masses, corresponding to a pion mass of m_{π}∼806  MeV. The Gamow-Teller matrix element in tritium is found to be 0.

View Article and Find Full Text PDF