Publications by authors named "Zohar Amsalem"

Carcinogenesis is a complicated process that involves the deregulation of epigenetics, resulting in cellular transformational events, such as proliferation, differentiation, and metastasis. Most chromatin-modifying enzymes utilize metabolites as co-factors or substrates and thus are directly dependent on such metabolites as acetyl-coenzyme A, S-adenosylmethionine, and NAD+. Here, we show that using specific siRNA to deplete a tumor of VDAC1 not only led to reprograming of the cancer cell metabolism but also altered several epigenetic-related enzymes and factors.

View Article and Find Full Text PDF

The mitochondrial gatekeeper voltage-dependent anion channel 1 (VDAC1) controls metabolic and energy cross-talk between mitochondria and the rest of the cell and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of downregulated VDAC1 expression in the U-87MG glioblastoma, MDA-MB-231 triple-negative breast cancer (TNBC), and A549 lung cancer cell lines, using small interfering RNA (siRNA) specific to human VDAC1 (si-hVDAC1). The cells were subjected to si-hVDAC1 (50 nM) treatment for 5-20 days.

View Article and Find Full Text PDF

Mitochondrial VDAC1 mediates cross talk between the mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca , and metabolites and serves as a key player in apoptosis. As such, VDAC1 is involved in two important hallmarks of cancer development, namely energy and metabolic reprograming and apoptotic cell death evasion. We previously developed cell-penetrating VDAC1-derived peptides that interact with hexokinase (HK), Bcl-2, and Bcl-xL to prevent the anti-apoptotic activities of these proteins and induce cancer cell death, with a focus on leukemia and glioblastoma.

View Article and Find Full Text PDF