Publications by authors named "Zohar A Arnon"

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability.

View Article and Find Full Text PDF

Nucleobase crystals demonstrate unique intrinsic fluorescence properties in the visible spectral range. This is in contrast to their monomeric counterparts. Moreover, some nucleobases were found to exhibit red edge excitation shift.

View Article and Find Full Text PDF

Defrost sensors are a crucial element for proper functioning of the pharmaceutical cold chain. In this paper, the self-assembled peptide-based hydrogels were used to construct a sensitive defrost sensor for the transportation and storage of medications and biomaterials. The turbidity of the peptide hydrogel was employed as a marker of the temperature regime.

View Article and Find Full Text PDF

Despite the fundamental clinical importance of amyloid fibril formation, its mechanism is still enigmatic. Crystallography of minimal amyloid models was a milestone in the understanding of the architecture and biological activities of amyloid fibers. However, the crystal structure of ultimate dipeptide-based amyloids is not yet reported.

View Article and Find Full Text PDF

The self-assembly of peptides is a key direction for fabrication of advanced materials. Novel approaches for fine tuning of macroscopic and microscopic properties of peptide self-assemblies are of a high demand for constructing biomaterials with desired properties. In this work, while studying the kinetics of the Fmoc-Diphenylalanine (Fmoc-FF) dipeptide self-assembly using the Thioflavin T (ThT) dye, we observed that the presence of ThT strongly modifies structural and mechanical properties of the Fmoc-FF hydrogel.

View Article and Find Full Text PDF

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling.

View Article and Find Full Text PDF

Luminescence of biomolecules in the visible range of the spectrum has been experimentally observed upon aggregation, contrary to their monomeric state. However, the physical basis for this phenomenon is still elusive. Here, we systematically examine all coded amino acids to provide non-biased empirical insights.

View Article and Find Full Text PDF

Supramolecular polymer co-assembly is a useful approach to modulate peptide nanostructures. However, the co-assembly scenario where one of the peptide building blocks simultaneously forms a hydrogel is yet to be studied. Herein, we investigate the co-assembly formation of diphenylalanine (FF), and Fmoc-diphenylalanine (FmocFF) within the 3D network of FmocFF hydrogel.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia. Despite substantial investment in research, there are no current effective treatments to prevent or delay the onset and development of AD and the exact molecular mechanism of AD pathogenesis is still not fully understood. Researchers have long suspected that microbial infections may play a role in AD; however, this hypothesis has been greatly overlooked for decades, only recently gaining a traction and recognition within the broad scientific community due to new overwhelming evidence on the association of various pathogenic microbes and AD.

View Article and Find Full Text PDF

The formation of ordered nanostructures by metabolites is gaining increased interest due to the simplicity of the building blocks and their natural occurrence. Specifically, aromatic amino acids possess the ability to form ordered supramolecular interactions due to their limited solubility in aqueous solution. Unexpectedly, l-tyrosine (l-Tyr) is almost 2 orders of magnitude less soluble in water compared to l-phenylalanine (l-Phe).

View Article and Find Full Text PDF

Self-assembling peptides and oligonucleotides have given rise to synthetic materials with several applications in nanotechnology. Aggregation of synthetic oligosaccharides into well-defined architectures has not been reported even though natural polysaccharides, such as cellulose and chitin, are key structural components of biomaterials. Here, we report that six synthetic oligosaccharides, ranging from dimers to hexamers, self-assemble into nanostructures of varying morphologies and emit within the visible spectrum in an excitation-dependent manner.

View Article and Find Full Text PDF

Molecular self-assembly is a major approach for the fabrication of functional supramolecular nanomaterials. This dynamic, straightforward, bottom-up procedure may result in the formation of various architectures at the nano-scale, with remarkable physical and chemical characteristics. Biological and bio-inspired building blocks are especially attractive due to their intrinsic tendency to assemble into well-organized structures, as well as their inherent biocompatibility.

View Article and Find Full Text PDF

The ensemble of native, folded state was once considered to represent the global energy minimum of a given protein sequence. More recently, the discovery of the cross-β amyloid state revealed that deeper energy minima exist, often associated with pathogenic, fibrillar deposits, when the concentration of proteins reaches a critical value. Fortunately, a sizable energy barrier impedes the conversion from native to pathogenic states.

View Article and Find Full Text PDF

The formation of apoptosis-inducing amyloidal structures by metabolites has significantly extended the "amyloid hypothesis" to include non-proteinaceous, single metabolite building blocks. However, detection of metabolite assemblies is restricted compared to their larger protein-based counterparts owing to the hindrance of external labelling and limited immunohistochemical detection tools. Herein, we present the detection of the formation, dynamics, and cellular distribution of metabolite amyloid-like structures and provide mechanistic insights into the generation of supramolecular chromophores.

View Article and Find Full Text PDF

Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order.

View Article and Find Full Text PDF

The accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes.

View Article and Find Full Text PDF

One major challenge of functional material fabrication is combining flexibility, strength, and toughness. In several biological and artificial systems, these desired mechanical properties are achieved by hierarchical architectures and various forms of anisotropy, as found in bones and nacre. Here, it is reported that crystals of N-capped diphenylalanine, one of the most studied self-assembling systems in nanotechnology, exhibit well-ordered packing and diffraction of sub-Å resolution, yet display an exceptionally flexible nature.

View Article and Find Full Text PDF

The phenomenon of protein aggregation into amyloid fibrils is associated with a large number of major diseases of unrelated etiology. Unraveling the mechanism of amyloid self-assembly and identifying therapeutic directions to control this process are of utmost importance. Research in this field has been hampered by several challenges, including reproducibility, low protein purification yields, and the inherent aggregation propensity of amyloidogenic proteins, making them extremely difficult to study.

View Article and Find Full Text PDF

Peptide-based biomaterials are key to the future of diagnostics and therapy, promoting applications such as tissue scaffolds and drug delivery vehicles. To realise the full potential of the peptide systems, control and optimisation of material properties are essential. Here we investigated the co-assembly of the minimal amyloid motif peptide, diphenylalanine (FF), and its tert-butoxycarbonyl (Boc)-modified derivative.

View Article and Find Full Text PDF

The dynamic nature of supramolecular polymers has a key role in their organization. Yet, the manipulation of their dimensions and polarity remains a challenge. Here, the minimalistic diphenylalanine building block was applied to demonstrate control of nano-assemblies growth and shrinkage using microfluidics.

View Article and Find Full Text PDF

Molecular self-assembly is pivotal for the formation of ordered nanostructures, yet the structural diversity obtained by the use of a single type of building block is limited. Multicomponent coassembly, utilized to expand the architectural space, is principally based on empirical observations rather than rational design. Here we report large-scale molecular dynamics simulations of the coassembly of diphenylalanine (FF) and triphenylalanine (FFF) peptides at various mass ratios.

View Article and Find Full Text PDF

Molecular self-assembly of peptides into ordered nanotubes is highly important for various technological applications. Very short peptide building blocks, as short as dipeptides, can form assemblies with unique mechanical, optical, piezoelectric, and semiconductive properties. Yet, the control over nanotube length in solution has remained challenging, due to the inherent sequential self-assembly mechanism.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: