Publications by authors named "Zofia Von Marschall"

Osteopontin (OPN) is a secreted protein involved in most aspects of tumor progression and metastasis development. Elevated OPN expression has been reported in multiple types of cancer including glioblastoma (GBM), the highest grade and most aggressive brain tumor. GBMs contain a subpopulation of glioma-initiating cells (GICs) implicated in progression, therapeutic resistance and recurrence.

View Article and Find Full Text PDF

Most of the proposed extracellular biomineralization processes include the secretion of proteins that interact with mineral ions and/or mineral surfaces. Typically these proteins are acidic or have acidic domains that interact with multivalent cations in the extracellular environment. We propose that most acidic, Ca(2+)-binding proteins challenge the cell's mechanisms for trafficking through the endoplasmic reticulum (ER) lumen due to lumenal mM calcium that cause them to form large aggregates.

View Article and Find Full Text PDF

Families with nonsyndromic dentinogenesis imperfecta (DGI) and the milder, dentin dysplasia (DD), have mutations in one allele of the dentin sialophosphoprotein (DSPP) gene. Because loss of a single Dspp allele in mice (and likely, humans) causes no dental phenotype, the mechanism(s) underling the dominant negative effects were investigated. DSPP mutations occur in three classes.

View Article and Find Full Text PDF

Lymphatic metastasis constitutes a critical route of disease dissemination, which limits the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). As lymphangiogenesis has been implicated in stimulation of lymphatic metastasis by vascular endothelial growth factor-C (VEGF-C) and VEGF-D, we studied the effect of the angioregulatory growth factor angiopoietin-2 (Ang-2) on PDAC progression. Ang-2 was found to be expressed in transformed cells of human PDAC specimens, with corresponding Tie-2 receptors present on blood and lymphatic endothelium.

View Article and Find Full Text PDF

Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported.

View Article and Find Full Text PDF

The protease that cleaves the most abundant non-collagenous protein of dentin matrix, dentin sialophosphoprotein (DSPP), into its two final dentin matrix products, dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), has not been directly identified. In this study, full-length recombinant mouse DSPP was made for the first time in furin-deficient mammalian LoVo cells and used to test the ability of three different isoforms of one candidate protease, bone morphogenetic protein-1 (BMP1) to cleave DSPP at the appropriate site. Furthermore, two reported enhancers of BMP1/mTLD activity (procollagen C-endopeptidase enhancer-1, PCPE-1, and secreted frizzled-related protein-2, sFRP2) were tested for their abilities to modulate BMP1-mediated processing of both DSPP and another SIBLING family member with a similar cleavage motif, dentin matrix protein-1 (DMP1).

View Article and Find Full Text PDF

The secreted small proteoglycan, decorin, modulates collagen fibril formation as well as the bioactivity of various members of the transforming growth factor-beta (TGFbeta) superfamily. Indeed, recombinant prodecorin has been used in several gene therapy experiments to inhibit unwanted fibrosis in model diseases of the kidney, heart, and other tissues although the status of the propeptide within the target tissues is unknown. Currently the protease that removes the highly conserved propeptide from decorin is unproven.

View Article and Find Full Text PDF

Dentin matrix protein-1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN) are three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) co-expressed/secreted by skeletal and active ductal epithelial cells. Although etiological mechanisms remain unclear, DMP1 is the only one of these three genes currently known to have mutations resulting in human disease, and yet it remains the least studied. All three contain the highly conserved integrin-binding tripeptide, RGD, and experiments comparing the cell attachment and haptotactic migration-enhancing properties of DMP1 to BSP and OPN were performed using human skeletal (MG63 and primary dental pulp cells) and salivary gland (HSG) cells.

View Article and Find Full Text PDF

Lymphatic spread is an important clinical determinant for the prognosis of hepatocellular carcinoma (HCC), but little is known about the control of lymphangiogenesis in HCC. We addressed expression and biological role of the pro-(lymph), angiogenic protein VEGF-D in this tumor entity. Using immunohistochemistry and in situ hybridization on specimens of HCC, cirrhotic and normal liver we found abundant expression of VEGF-D exclusively in the tumor cells.

View Article and Find Full Text PDF

The presence of lymphatic metastases is a strong indicator for poor prognosis in patients with ductal pancreatic cancer. In order to better understand the mechanisms controlling lymphatic growth and lymph node metastasis in human ductal pancreatic cancer, we analyzed the expression pattern of the vascular endothelial growth factor-D (VEGF-D), its receptor VEGF-receptor-3 (VEGFR-3) and the lymphatic endothelium-specific hyaluronan receptor LYVE-1 in a panel of 19 primary human ductal pancreatic tumors and 10 normal pancreas specimens. We further addressed the biological function of VEGF-D for induction of lymphatic metastasis in a nude mouse xenograft model using two human ductal pancreatic cancer cell lines with overexpression of VEGF-D.

View Article and Find Full Text PDF

Background: Interferon alpha (IFN-alpha) has antiangiogenic activity, although the underlying mechanism of action is unclear. Because human neuroendocrine (NE) tumors are highly vascularized and sensitive to IFN-alpha, we investigated whether the therapeutic effects of IFN-alpha result from an inhibition of angiogenesis mediated by a decrease in vascular endothelial growth factor (VEGF) gene expression.

Methods: VEGF gene and protein expression was analyzed in NE tumors by immunohistochemistry and in NE tumor cell lines by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

The expression pattern and functional interaction of proangiogenic factors in human cholangiocellular carcinoma (CCC) have not been fully defined. We therefore investigated the expression of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-beta 1 as well as their respective receptors in human CCC tumor samples and further analyzed their functional interaction in vitro. Expression of VEGF, TGF-beta 1, and their receptors was examined by immunohistochemistry, in situ hybridization, quantitative competitive reverse transcription-PCR, and ELISA.

View Article and Find Full Text PDF

Background: Human pancreatic adenocarcinomas are highly resistant to chemotherapy. The p16 tumor-suppressor protein is inactivated in more than 90% of human pancreatic cancers. The p16 protein transcriptionally inhibits expression of retinoblastoma tumor-suppressor gene pRB.

View Article and Find Full Text PDF