Publications by authors named "Zoete Vincent"

Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.

View Article and Find Full Text PDF

Approaches to analyze and cluster T-cell receptor (TCR) repertoires to reflect antigen specificity are critical for the diagnosis and prognosis of immune-related diseases and the development of personalized therapies. Sequence-based approaches showed success but remain restrictive, especially when the amount of experimental data used for the training is scarce. Structure-based approaches which represent powerful alternatives, notably to optimize TCRs affinity toward specific epitopes, show limitations for large-scale predictions.

View Article and Find Full Text PDF

Mutations affecting codon 172 of the isocitrate dehydrogenase 2 () gene define a subgroup of sinonasal undifferentiated carcinomas (SNUCs) with a relatively favorable prognosis and a globally hypermethylated phenotype. They are also recurrent (along with mutations) in gliomas, acute myeloid leukemia, and intrahepatic cholangiocarcinoma. Commonly reported mutations, all associated with aberrant IDH2 enzymatic activity, include R172K, R172S, R172T, R172G, and R172M.

View Article and Find Full Text PDF

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT.

View Article and Find Full Text PDF

Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies.

View Article and Find Full Text PDF

Encephalitis is a rare and potentially fatal manifestation of herpes simplex type 1 infection. Following genome-wide genetic analyses, we identified a previously uncharacterized and very rare heterozygous variant in the E3 ubiquitin ligase WWP2, in a 14-month-old girl with herpes simplex encephalitis. The p.

View Article and Find Full Text PDF

Estimating protein targets of compounds based on the similarity principle-similar molecules are likely to show comparable bioactivity-is a long-standing strategy in drug research. Having previously quantified this principle, we present here a large-scale evaluation of its predictive power for inferring macromolecular targets by reverse screening an unprecedented vast external test set of more than 300,000 active small molecules against another bioactivity set of more than 500,000 compounds. We show that machine-learning can predict the correct targets, with the highest probability among 2069 proteins, for more than 51% of the external molecules.

View Article and Find Full Text PDF

A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.

View Article and Find Full Text PDF

Drug discovery aims to identify potential therapeutic compounds capable of modulating the activity of specific biological targets. Molecular docking can efficiently support this process by predicting binding interactions between small molecules and macromolecular targets and potentially accelerating screening campaigns. SwissDock is a computational tool released in 2011 as part of the SwissDrugDesign project, providing a free web-based service for small-molecule docking after automatized preparation of ligands and targets.

View Article and Find Full Text PDF

Due to their various advantages, interest in the development of covalent drugs has been renewed in the past few years. It is therefore important to accurately describe and predict their interactions with biological targets by computer-aided drug design tools such as docking algorithms. Here, we report a covalent docking procedure for our in-house docking code Attracting Cavities (AC), which mimics the two-step mechanism of covalent ligand binding.

View Article and Find Full Text PDF

Most steps of drug discovery are now routinely supported and accelerated by computer-aided drug design tools. Among them, structure-based approaches use the three-dimensional structure of the targeted biomacromolecule as a major source of information. When it comes to calculating the interactions of small molecules with proteins using the equations of molecular mechanics, topologies, atom typing, and force field parameters are required.

View Article and Find Full Text PDF

Molecular docking is a computational approach for predicting the most probable position of a ligand in the binding site of a target macromolecule. Our docking algorithm Attracting Cavities (AC) has been shown to compare favorably to other widely used docking algorithms [Zoete, V.; et al.

View Article and Find Full Text PDF

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza A virus primarily enters host cells through a process called clathrin-dependent receptor-mediated endocytosis, but the exact entry receptor has not been definitively identified.
  • Researchers used a method involving proximity ligation and mass spectrometry to identify transferrin receptor 1 (TfR1) as a potential receptor that facilitates IAV entry.
  • Experiments confirmed that TfR1's recycling is crucial for virus entry, and even modified forms of TfR1 can assist in IAV uptake, highlighting a unique mechanism by which the virus exploits the receptor.
View Article and Find Full Text PDF

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown.

View Article and Find Full Text PDF

CD4 T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4 T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry.

View Article and Find Full Text PDF

The development of targeted therapies for non- p.Val600-mutant melanomas remains a challenge. Triple wildtype (TWT) melanomas that lack mutations in , , or form 10% of human melanomas and are heterogeneous in their genomic drivers.

View Article and Find Full Text PDF

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2).

View Article and Find Full Text PDF

Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) on multiple myeloma (MM) produces fast but not long-lasting responses. Reasons for treatment failure are poorly understood. CARs simultaneously targeting two antigens may represent an alternative.

View Article and Find Full Text PDF

The mutant IDH1 inhibitor ivosidenib improves outcomes for patients with IDH1-mutated cholangiocarcinoma, but resistance inevitably develops. Mechanisms of resistance and strategies to overcome resistance are poorly understood. Here we describe two patients with IDH1 R132C-mutated metastatic cholangiocarcinoma who developed acquired resistance to ivosidenib.

View Article and Find Full Text PDF

The BRAF kinase is attracting a lot of attention in oncology as alterations of its amino acid sequence can constitutively activate the MAP kinase signaling pathway, potentially contributing to the malignant transformation of the cell but at the same time rendering it sensitive to targeted therapy. Several pathologic BRAF variants were grouped in three different classes (I, II and III) based on their effects on the protein activity and pathway. Discerning the class of a BRAF mutation permits to adapt the treatment proposed to the patient.

View Article and Find Full Text PDF

The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC values of 34 nM.

View Article and Find Full Text PDF