Background: Despite tremendous advances in characterizing human neural circuits that govern emotional and cognitive functions impaired in depression and anxiety, we lack a circuit-based taxonomy for depression and anxiety that captures transdiagnostic heterogeneity and informs clinical decision making.
Methods: We developed and tested a novel system for quantifying 6 brain circuits reproducibly and at the individual patient level. We implemented standardized circuit definitions relative to a healthy reference sample and algorithms to generate circuit clinical scores for the overall circuit and its constituent regions.
Biol Psychiatry Cogn Neurosci Neuroimaging
April 2018
Background: Pathophysiology models of major depression (MD) center on the dysfunction of various cortical areas within the orbital and medial prefrontal cortex. While independent structural and functional abnormalities in these areas are consistent findings in MD, the complex interactions among them and the rest of the cortex remain largely unexplored.
Methods: We used resting-state functional magnetic resonance imaging connectivity to systematically map alterations in the communication between orbital and medial prefrontal cortex fields and the rest of the brain in MD.
Importance: The symptoms that define mood, anxiety, and trauma disorders are highly overlapping across disorders and heterogeneous within disorders. It is unknown whether coherent subtypes exist that span multiple diagnoses and are expressed functionally (in underlying cognition and brain function) and clinically (in daily function). The identification of cohesive subtypes would help disentangle the symptom overlap in our current diagnoses and serve as a tool for tailoring treatment choices.
View Article and Find Full Text PDFThe orbital and medial prefrontal cortex (OMPFC) has been implicated in decision-making, reward and emotion processing, and psychopathology, such as depression and obsessive-compulsive disorder. Human and monkey anatomical studies indicate the presence of various cortical subdivisions and suggest that these are organized in two extended networks, a medial and an orbital one. Attempts have been made to replicate these neuroanatomical findings in vivo using MRI techniques for imaging connectivity.
View Article and Find Full Text PDFBMC Psychiatry
March 2016
Background: Understanding how brain circuit dysfunctions relate to specific symptoms offers promise for developing a brain-based taxonomy for classifying psychopathology, identifying targets for mechanistic studies and ultimately for guiding treatment choice. The goal of the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health is to accelerate the development of such neurobiological models of mental disorder independent of traditional diagnostic criteria. In our RDoC Anxiety and Depression ("RAD") project we focus trans-diagnostically on the spectrum of depression and anxiety psychopathology.
View Article and Find Full Text PDFRecent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres that is associated with the series of left-right eye movements is critical in causing the enhanced retrieval. This hypothesis predicts a beneficial effect on retrieval of alternating left-right stimulation not only of the visuomotor system, but also of the somatosensory system, both of which have a strict contralateral organization.
View Article and Find Full Text PDFSeries of horizontal saccadic eye movements (EMs) are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye movement desensitization and reprocessing (EMDR) therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG).
View Article and Find Full Text PDF