Publications by authors named "Zoe R Todd"

Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes.

View Article and Find Full Text PDF

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid.

View Article and Find Full Text PDF

The origin of life likely occurred within environments that concentrated cellular precursors and enabled their co-assembly into cells. Soda lakes (those dominated by Na ions and carbonate species) can concentrate precursors of RNA and membranes, such as phosphate, cyanide, and fatty acids. Subsequent assembly of RNA and membranes into cells is a long-standing problem because RNA function requires divalent cations, e.

View Article and Find Full Text PDF

The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars.

View Article and Find Full Text PDF

The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology.

View Article and Find Full Text PDF

Cyanide and its derivatives play important roles in prebiotic chemistry through a variety of possible mechanisms. In particular, cyanide has been shown to allow for the synthesis of ribonucleotides and amino acids. Although dissolved hydrogen cyanide can be lost as a gas or undergo hydrolysis reactions, cyanide can also potentially be stored and stockpiled as ferrocyanide (Fe(CN)), which is more stable.

View Article and Find Full Text PDF

The first cells were plausibly bounded by membranes assembled from fatty acids with at least 8 carbons. Although the presence of fatty acids on the early Earth is widely assumed within the astrobiology community, there is no consensus regarding their origin and abundance. In this Review, we highlight three possible sources of fatty acids: (1) delivery by carbonaceous meteorites, (2) synthesis on metals delivered by impactors, and (3) electrochemical synthesis by spark discharges.

View Article and Find Full Text PDF

Fatty acid vesicles may have played a role in the origin of life as a major structural component of protocells, with the potential for encapsulation of genetic materials. Vesicles that grew and divided more rapidly than other vesicles could have had a selective advantage. Fatty acid vesicles grow by incorporating additional fatty acids from micelles, and certain prebiotic molecules (e.

View Article and Find Full Text PDF

Replication of RNA genomes within membrane vesicles may have been a critical step in the development of protocells on the early Earth. Cold temperatures near 0 °C improve the stability of RNA and allow efficient copying, while some climate models suggest a cold early Earth, so the first protocells may have arisen in cold-temperature environments. However, at cold temperatures, saturated fatty acids, which would have been available on the early Earth, form gel-phase membranes that are rigid and restrict mobility within the bilayer.

View Article and Find Full Text PDF

Biochemistry on Earth makes use of the key elements carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur (or CHONPS). Chemically accessible molecules containing these key elements would presumably have been necessary for prebiotic chemistry and the origins of life on Earth. For example, feedstock molecules including fixed nitrogen (e.

View Article and Find Full Text PDF

Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry.

View Article and Find Full Text PDF

Substitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose.

View Article and Find Full Text PDF

UV light has been invoked as a source of energy for driving prebiotic chemistry, but such high energy photons are also known to cause damage to biomolecules and their precursors. One potential mechanism for increasing the lifetime of UV-photounstable molecules is to invoke a protection or shielding mechanism. UV shielding could either occur by the molecule in question itself (self-shielding) or by the presence of other UV-absorbing molecules.

View Article and Find Full Text PDF

Delivery of water and organics by asteroid and comet impacts may have influenced prebiotic chemistry on the early Earth. Some recent prebiotic chemistry experiments emphasize hydrogen cyanide (HCN) as a feedstock molecule for the formation of sugars, ribonucleotides, amino acids, and lipid precursors. Here, we assess how much HCN originally contained in a comet would survive impact, using parametric temperature and pressure profiles together with a time-dependent chemistry model.

View Article and Find Full Text PDF

A previously proposed synthesis of pyrimidine ribonucleotides makes use of ultraviolet (UV) light to convert β-d-ribocytidine-2',3'-cyclic phosphate to β-d-ribouridine-2',3'-cyclic phosphate, while simultaneously selectively degrading synthetic byproducts. Past studies of the photochemical reactions of pyrimidines have employed mercury arc lamps, characterized by narrowband emission centered at 254 nm, which is not representative of the UV environment of the early Earth. To further assess this process under more realistic circumstances, we investigated the wavelength dependence of the UV-driven conversion of β-d-ribocytidine-2',3'-cyclic phosphate to β-d-ribouridine-2',3'-cyclic phosphate.

View Article and Find Full Text PDF

Three related molecules in the 2-aminoazole family are potentially important for prebiotic chemistry: 2-aminooxazole, 2-aminoimidazole, and 2-aminothiazole, which can provide critical functions as an intermediate in nucleotide synthesis, a nucleotide activating agent, and a selective agent, respectively. Here, we examine the wavelength-dependent photodegradation of these three molecules under mid-range UV light (210-290 nm). We then assess the implications of the observed degradation rates for the proposed prebiotic roles of these compounds.

View Article and Find Full Text PDF

Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides.

View Article and Find Full Text PDF

Photoredox cycling during UV irradiation of ferrocyanide ([FeII(CN)6]4-) in the presence of stoichiometric sulfite (SO32-) is shown to be an extremely effective way to drive the reductive homologation of hydrogen cyanide (HCN) to simple sugars and precursors of hydroxy acids and amino acids.

View Article and Find Full Text PDF

A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g.

View Article and Find Full Text PDF

UV-driven photoredox processing of cyanocuprates can generate simple sugars necessary for prebiotic synthesis. We investigate the wavelength dependence of this process from 215 to 295 nm and generally observe faster rates at shorter wavelengths. The most efficient wavelengths are accessible to a range of potential prebiotic atmospheres, supporting the potential role of cyanocuprate photochemistry in prebiotic synthesis on the early Earth.

View Article and Find Full Text PDF

Abstract Methyl thioacetate, or activated acetic acid, has been proposed to be central to the origin of life and an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about 3 orders of magnitude faster (K=0.

View Article and Find Full Text PDF