The luminescent transition metal complexes [Re(CO)(3)Cl(bppz)] and [Pt(CC-C(6)H(4)CF(3))(2)(bppz)] [bppz = 2,3-bis(2-pyridyl)pyrazine], in which one of the diimine binding sites of the potentially bridging ligand bppz is vacant, have been used as 'complex ligands' to make heterodinuclear d-f complexes by attachment of a {Ln(dik)(3)} fragment (dik = a 1,3-diketonate) at the vacant site. When Ln = Pr, Nd, Er or Yb the lanthanide centre has low-energy f-f excited states capable of accepting energy from the (3)MLCT excited state of the Pt(II) or Re(I) centre, quenching the (3)MLCT luminescence and affording sensitised lanthanide(III)-based luminescence in the near-IR region. UV/Vis and luminescence spectroscopic titrations allowed measurement of (i) the association constants for binding of the {Ln(dik)(3)} fragment at the vacant diimine site of [Re(CO)(3)Cl(bppz)] or [Pt(CC-C(6)H(4)CF(3))(2)(bppz)], and (ii) the degree of quenching of the (3)MLCT luminescence according to the nature of the Ln(III) centre.
View Article and Find Full Text PDFMononuclear complexes [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] (bpym = 2,2'-bipyrimidine), in which one of the bipyrimidine sites is vacant, have been used as "complex ligands" to prepare heterodinuclear d-f complexes in which a lanthanide tris(1,3-diketonate) unit is attached to the secondary bipyrimidine site to evaluate the ability of d-block chromophores to act as antennae for causing sensitized near-infrared (NIR) luminescence from adjacent lanthanide(III) centers. The two sets of complexes so prepared are [Re(CO)(3)Cl(mu-bpym)Ln(fod)(3)] (abbreviated as Re-Ln; where Ln = Yb, Nd, Er) and [(F(3)C-C(6)H(4)-CC)(2)Pt(mu-bpym)Ln(hfac)(3)] (abbreviated as Pt-Ln; where Ln = Nd, Gd). Members of both series have been structurally characterized; the metal-metal separation across the bipyrimidine bridge is approximately 6.
View Article and Find Full Text PDFN,N'-Chelating ligands based on the 2-(2-pyridyl)benzimidazole (PB) core have been prepared with a range of substituents (phenyl, pentafluorophenyl, naphthyl, anthracenyl, pyrenyl) connected to the periphery via alkylation of the benzimidazolyl unit at one of the N atoms. These PB ligands have been used to prepare a series of complexes of the type [Re(PB)(CO)(3)Cl], [Pt(PB)(CCR)(2)](where -CCR is an acetylide ligand) and [Ru(bpy)(2)(PB)][PF(6)](2)(bpy = 2,2'-bipyridine). Six of the complexes have been structurally characterised.
View Article and Find Full Text PDFThe mononuclear complex [Ru(PPh(3))(2)(CO)(2)(L(1))] (1; H(2)L(1) = 7,8-dihydroxy-6-methoxycoumarin) and the dinuclear complexes [[Ru(PPh(3))(2)(CO)(2)](2)(L(2))][PF(6)] [[2][PF(6)]; H(3)L(2) = 9-phenyl-2,3,7-trihydroxy-6-fluorone] and [[Ru(PBu(3))(2)(CO)(2)](2)(L(3))] (3; H(4)L(3) = 1,2,3,5,6,7-hexahydroxyanthracene-9,10-dione) have been prepared; all complexes contain one or two trans,cis-[Ru(PR(3))(2)(CO)(2)] units, each connected to a chelating dioxolene-type ligand. In all cases the dioxolene ligands exhibit reversible redox activity, and accordingly the complexes were studied by electrochemistry and UV/vis/NIR, IR, and EPR spectroscopy in their accessible oxidation states. Oxidation of 1 to [1](+) generates a ligand-centered semiquinone radical with some metal character as shown by the IR and EPR spectra.
View Article and Find Full Text PDFA series of dinuclear platinum(II)-lanthanide(iii) complexes has been prepared in which a square-planar Pt(II) unit, either [(PPh(3))(2)Pt(pdo)] (H(2)pdo=5,6-dihydroxyphenanthroline) or [Cl(2)Pt(dppz)] [dppz=2,3-bis(2-pyridyl)pyrazine], is connected to a Ln(dik)(3) unit ("dik"=a 1,3-diketonate ligand). The mononuclear complexes [(PPh(3))(2)Pt(pdo)] and [Cl(2)Pt(dppz)] both have external, vacant N,N-donor diimine-type binding sites that react with various [Ln(dik)(3)(H(2)O)(2)] units to give complexes [(PPh(3))(2)Pt(micro-pdo)Ln(tta)(3)] (series A; Htta=thenoyltrifluoroacetone), [Cl(2)Pt(micro-dppz)Ln(tta)(3)] (series B); and [Cl(2)Pt(micro-dppz)Ln(btfa)(3)] (series C; Hbtfa=benzoyltrifluoroacetone); in all of these the lanthanide centres are eight-coordinate. The lanthanides used exhibit near-infrared luminescence (Nd, Yb, Er).
View Article and Find Full Text PDFReaction of the bis-bidentate ligand L1, having two bidentate pyrazolyl-pyridine termini, with Co(II) or Zn(II) results in formation of the complexes [M8(L1)12]X16 (X = perchlorate or tetrafluoroborate); [Zn8(L1)2](ClO4)16 has been structurally characterised and is a cube with a metal ion at each corner, a bridging ligand along each edge, and an anion in the central cavity.
View Article and Find Full Text PDFIn a series of heterodinuclear complexes in which a Pt(PPh3)2(catecholate) chromophore is covalently linked to a lanthanide tris(diketonate) unit, sensitised near-IR emission from Yb(III), Nd(III) and Er(III) occurs on excitation of the Pt(II) chromophore at 520 nm.
View Article and Find Full Text PDFThe bridging ligands L(1) and L(2) contain two N,N-bidentate pyrazolyl-pyridine units linked to a central aromatic spacer unit (1,2-phenyl or 2,3-naphthyl, respectively). Reaction with Ni(II) salts and treatment with the anions tetrafluoroborate or perchlorate result in formation of dinuclear complexes having a 2:3 metal:ligand ratio, with one bridging and two terminal tetradentate ligands. In contrast, reaction of L(1) and L(2) with Co(II) salts, followed by treatment with tetrafluoroborate or perchlorate, results in assembly of cage complexes having a 4:6 metal:ligand ratio; these complexes have a metal ion at each corner of an approximate tetrahedron, and a bis-bidentate bridging ligand spanning each edge.
View Article and Find Full Text PDF