A solitary functioning kidney (SFK) from birth predisposes to hypertension and kidney dysfunction, and this may be associated with impaired fluid and sodium homeostasis. Brief and early angiotensin-converting enzyme inhibition (ACEi) in a sheep model of SFK delays onset of kidney dysfunction. We hypothesized that modulation of the renin-angiotensin system via brief postnatal ACEi in SFK would reprogram renal sodium and water handling.
View Article and Find Full Text PDFA child with a congenital solitary functioning kidney (SFK) may develop kidney disease from early in life due to hyperfiltration injury. Previously, we showed in a sheep model of SFK that brief angiotensin-converting enzyme inhibition (ACEi) early in life is reno-protective and increases renal functional reserve (RFR) at 8 months of age. Here we investigated the long-term effects of brief early ACEi in SFK sheep out to 20 months of age.
View Article and Find Full Text PDFBackground: Children born with a solitary functioning kidney (SFK) are predisposed to develop hypertension and kidney injury. Glomerular hyperfiltration and hypertrophy contribute to the pathophysiology of kidney injury. Angiotensin-converting enzyme inhibition (ACEi) can mitigate hyperfiltration and may be therapeutically beneficial in reducing progression of kidney injury in those with an SFK.
View Article and Find Full Text PDFMajority of patients with hypertension and chronic kidney disease (CKD) undergoing renal denervation (RDN) are maintained on antihypertensive medication. However, RDN may impair compensatory responses to hypotension induced by blood loss. Therefore, continuation of antihypertensive medications in denervated patients may exacerbate hypotensive episodes.
View Article and Find Full Text PDFRenal sympathetic nerves contribute to renal excretory function during volume expansion. We hypothesized that intact renal innervation is required for excretion of a fluid/electrolyte load in hypertensive chronic kidney disease (CKD) and normotensive healthy settings. Blood pressure, kidney hemodynamic and excretory response to 180 min of isotonic saline loading (0.
View Article and Find Full Text PDFChildren born with a solitary functioning kidney (SFK) have an increased risk of hypertension and kidney disease from early in adulthood. In response to a reduction in kidney mass, the remaining kidney undergoes compensatory kidney growth. This is associated with both an increase in size of the kidney tubules and the glomeruli and an increase in single nephron glomerular filtration rate (SNGFR).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2019
Catheter-based renal denervation (RDN) was introduced as a treatment for resistant hypertension. There remain critical questions regarding the physiological mechanisms underlying the hypotensive effects of catheter-based RDN. Previous studies indicate that surgical denervation reduces renin and the natriuretic response to saline loading; however, the effects on these variables of catheter-based RDN, which does not yield complete denervation, are largely unknown.
View Article and Find Full Text PDFWe examined whether renal denervation (RDN) reduced blood pressure (BP), improved glomerular filtration rate, albuminuria, and left ventricular mass in sheep with hypertensive chronic kidney disease (CKD). To examine whether renal nerve function returned in the long term, we examined vascular contraction to nerve stimulation in renal arteries and determined nerve regrowth by assessing renal TH (tyrosine hydroxylase), CGRP (calcitonin gene-related peptide), and norepinephrine levels in kidneys at 30 months after RDN. RDN normalized BP in hypertensive CKD sheep such that BP was similar to that of the normotensive sheep with intact nerves.
View Article and Find Full Text PDFBackground: Clinical trials applying catheter-based radiofrequency renal denervation (RDN) demonstrated a favorable safety profile with minimal acute or procedural adverse events. Whether ablation of renal nerves adversely affects compensatory responses to hemodynamic challenge has not been extensively investigated.
Objectives: The aim of this study was to examine the effect of RDN on mean arterial pressure, renal function, and the reflex response to hemorrhage in sheep with normotension (control) or with hypertensive chronic kidney disease (CKD).